grain orientation spread
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 997
Author(s):  
Huizhen Wang ◽  
Yuewen Zhai ◽  
Leyu Zhou ◽  
Zibo Zhang

Laser surface hardening is a promising surface technology to enhance the properties of surfaces. This technology was used on the 42CrMo press brake die. Its hardening behavior was investigated by using scanning electron microscopy and electron backscattering diffraction. The results indicated that the martensite in the hardening zone was significantly finer than that in the substrate. There were many low-angle grain boundaries in the martensite of the hardening zone, and the kernel average misorientation and grain orientation spread in the hardening zone grains were obviously greater, which further improved the hardness of the hardening zone, especially near the substrate. The microstructure and the properties of the blade maintained excellent uniformity with treatment by single-pass laser surface hardening with a spot size of 2 mm, scanning speed of 1800 mm/min, and power of 2200 W. The hardness of the hardening zone was 1.6 times higher than that of the base material, and the thickness of the hardening zone reached 1.05 mm.


2021 ◽  
Vol 118 (30) ◽  
pp. e2104132118
Author(s):  
Kate L. M. Elder ◽  
W. Beck Andrews ◽  
Markus Ziehmer ◽  
Nadiia Mameka ◽  
Christoph Kirchlechner ◽  
...  

Grain boundary formation during coarsening of nanoporous gold (NPG) is investigated wherein a nanocrystalline structure can form by particles detaching and reattaching to the structure. MicroLaue and electron backscatter diffraction measurements demonstrate that an in-grain orientation spread develops as NPG is coarsened. The volume fraction of the NPG sample is near the limit of bicontinuity, at which simulations predict that a bicontinuous structure begins to fragment into independent particles during coarsening. Phase-field simulations of coarsening using a computationally generated structure with a volume fraction near the limit of bicontinuity are used to model particle detachment rates. This model is tested by using the measured NPG structure as an initial condition in the phase-field simulations. We predict that up to ∼5% of the NPG structure detaches as a dealloyed Ag75Au25 sample is annealed at 300 °C for 420 min. The quantity of volume detached is found to be highly dependent on the volume fraction and volume fraction homogeneity of the nanostructure. As the void phase in the experiments cannot support independent particles, they must fall and reattach to the structure, a process that results in the formation of new grain boundaries. This particle reattachment process, along with other classic processes, leads to the formation of grain boundaries during coarsening in nanoporous metals. The formation of grain boundaries can impact a variety of applications, including mechanical strengthening; thus, the consideration and understanding of particle detachment phenomena are essential when studying nanoporous metals.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4004
Author(s):  
Pavel Dolzhenko ◽  
Marina Tikhonova ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov

The features of discontinuous dynamic recrystallization (DRX) in a highly-alloyed austenitic stainless steel were studied at temperatures of 800 °C to 1100 °C. Hot deformation accompanied by DRX was characterized by an activation energy of 415 kJ/mol. The frequency of the sequential DRX cycles depended on the deformation conditions; and the largest fraction of DRX grains with small grain orientation spread below 1° was observed at a temperature of around 1000 °C and a strain rate of about 10−3 s−1. The following power law relationships were obtained for DRX grain size (DDRX) and dislocation density (ρ) vs. temperature-compensated strain rate (Z) or peak flow stress (σP): DDRX ~ Z−0.25, ρ ~ Z0.1, σP ~ DDRX−0.9, σP ~ ρ1.4. The latter, i.e., σP ~ ρ1.4, was valid in the flow stress range below 300 MPa and changed to σP ~ ρ0.5 on increasing the stress. The obtained dependencies suggest a unique power law function between the dislocation density and the DRX grain size with an exponent of −0.5.


2021 ◽  
Vol 1016 ◽  
pp. 50-55
Author(s):  
Andrey Belyakov ◽  
Vladimir Torganchuk ◽  
Olga V. Rybalchenko ◽  
Sergey V. Dobatkin ◽  
Rustam Kaibyshev

Some feature of discontinuous dynamic recrystallization (DRX) in an Fe-0.4%C-18%Mn austenitic steel during isothermal compression tests at temperatures of 973-1373 K and strain rates of 10-3-10-1 s-1 were studied. The DRX microstructures consisted of various grains, i.e., DRX nuclei, growing DRX grains, and work-hardened DRX grains, which differentiated with the grain orientation spread (GOS). DRX was commonly promoted by a decrease in temperature-compensated strain rate, i.e., Zener-Hollomon parameter (Z), corresponding to an increase in deformation temperature and/or a decrease in strain rate. In contrast, the GOS distribution varied non-monotonously with Z. The large area fraction of DRX grains with small GOS below 1° appeared at definite temperature/strain rate conditions. The large fraction above 0.6 of DRX grains with small GOS was observed in DRX microstructures with a large ratio of CSL Σ3 boundary fraction to low-angle subboundary fraction. The GOS distribution in the DRX microstructures is discussed in terms of the DRX grain nucleation and growth rates.


2018 ◽  
Vol 941 ◽  
pp. 420-425
Author(s):  
Kazunari Fujiyama ◽  
Shuhei Higashide ◽  
Kazuki Nomoto

Creep damage processes for smooth and notched specimen of austenitic stainless steel through interrupted creep tests using multiple specimens. The material used was 18-8 stainless steel for boiler tube use. The mid-sections of interrupted creep test specimens were observed through SEM(Scanning Electron Microscope) instrumented with EBSD(Electron BackScatter Diffraction patter) equipment. IPF(Inverse Pole Figure) maps, Phase maps and GOS(Grain Orientation Spread) maps were used for investigating creep damage process. For smooth specimen, the relationship between macroscopic creep time fraction and GOS averaged for all pixels showed linearity, while the relationship between creep strain and the averaged GOS showed non-linearity regressed by Green function successfully. For notched specimen, the EBSD maps became noisy possibly due to extensive phase transformation under highly concentrated notch stress. Obtained GOS data for gamma phase only showed non-monotonic change with time and nominal strain. The evaluated local strains in the vicinity of the notch showed relatively small amount, which might cause the very long creep life compared with smooth specimen under the same nominal stress condition.


2018 ◽  
Vol 385 ◽  
pp. 343-348 ◽  
Author(s):  
A. Morozova ◽  
A. Dolzhenko ◽  
M. Odnobokova ◽  
Alexander P. Zhilyaev ◽  
Andrey Belyakov ◽  
...  

The microstructure evolution during the annealing treatment of a recycled copper after cold rolling to total strain of 2.6 was investigated. The cold deformation resulted in the elongation of initial grains along rolling direction and the strain-induced formation of subboundaries. Annealing recovery occurred in the temperature range 100-250 °C. The recrystallized microstructures were observed after annealing at 300-400 °C. The hardness of partially recrystallized copper samples was interpreted in terms of dislocation strengthening. The recrystallization kinetics was estimated according to a Johnson–Mehl–Avrami–Kolmogorov equation using different methods for recrystallized fraction determination, i.e., the fractional softening, the grain orientation spread, and the Kernel average misorientation.


2014 ◽  
Vol 783-786 ◽  
pp. 2359-2364 ◽  
Author(s):  
Daiki Shiozawa ◽  
Yoshikazu Nakai ◽  
Ryotaro Miura ◽  
Shota Matsuda

The three dimensional grain mapping technique for polycrystalline material, which is called X-ray diffraction contrast tomography (DCT) has proposed. In the present study, the measurement of DCT was conducted in SPring-8, which is the brightest synchrotron radiation facility in Japan, and the condition of measurement and data procedure are discussed. Developed technique was applied to aluminium alloy and stainless steel. The shape and location of grain could be determined by the developed three-dimensional mapping technique using the apparatus in a bending beam line of SPring-8. To evaluate plastic deformation, the grain orientation spreads of individual grains were measured. The grain orientation spread is caused by the mosaicity, which relates to the dislocation structure in a grain. The grain orientation spread was found to increase with increasing plastic strain. Fatigue damage also could be evaluated by the grain orientation spread in the DCT measurement.


2014 ◽  
Vol 891-892 ◽  
pp. 600-605 ◽  
Author(s):  
Daiki Shiozawa ◽  
Yoshikazu Nakai ◽  
Ryotaro Miura ◽  
Shota Matsuda

The three dimensional grain mapping technique for polycrystalline material, which is called X-ray diffraction contrast tomography (DCT) has proposed. In the present study, the measurement of DCT was conducted in SPring-8, which is the brightest synchrotron radiation facility in Japan, and the condition of measurement and data procedure are discussed. Developed technique was applied to aluminium alloy and stainless steel. The shape and location of grain could be determined by the developed three-dimensional mapping technique using the apparatus in a bending beam line of SPring-8. To evaluate plastic deformation, the grain orientation spreads of individual grains were measured. The grain orientation spread is caused by the mosaicity, which relates to the dislocation structure in a grain. The grain orientation spread was found to increase with increasing plastic strain. Fatigue damage also could be evaluated by the grain orientation spread in the DCT measurement.


2013 ◽  
Vol 19 (S5) ◽  
pp. 21-24 ◽  
Author(s):  
Jun-Ho Park ◽  
Tae-Hong Ahn ◽  
Hyun-Sik Choi ◽  
Jung-Man Chung ◽  
Dong-Ik Kim ◽  
...  

AbstractCast AZ31B-H24 magnesium alloy, comprising Mg with 3.27 wt% Al and 0.96 wt% Zn, was cold rolled and subsequently annealed. Global texture evolutions in the specimens were observed by X-ray diffractometry after the thermomechanical processing. Image-based microstructure and texture for the deformed, recrystallized, and grown grains were observed by electron backscattered diffractometry. Recrystallized grains could be distinguished from deformed ones by analyzing grain orientation spread. Split basal texture of ca. ±10–15° in the rolling direction was observed in the cold-rolled sample. Recrystallized grains had widely spread basal poles at nucleation stage; strong {0001} basal texture developed with grain growth during annealing.


Sign in / Sign up

Export Citation Format

Share Document