Effect of Pile-Up on Nanoindentation Measurements of Polycrystalline Bulk Metals

2013 ◽  
Vol 853 ◽  
pp. 143-150 ◽  
Author(s):  
Reza A. Mirshams ◽  
Ashish K. Srivastava

This paper presents the results of an experimental investigation on the effects of orientation and grain size on nanoindentation measurements of hardness and modulus of elasticity for three polycrystalline metals: copper, nickel, and iron. Three geometrically different indenter tips were used, and the pile-ups were characterized with a surface probe instrument. The electron backscatter diffraction (EBSD) technique and a scanning electron microscope (SEM) were used to characterize grain orientation and microstructure. It was found that additional contact areas due to pile-ups have a significant effect on determination of mechanical properties by the nanoindenter.

1999 ◽  
Vol 4 (2) ◽  
pp. 174-174
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  

2017 ◽  
Vol 885 ◽  
pp. 275-279 ◽  
Author(s):  
Péter János Szabó ◽  
András Csóré

As a novel procedure for determining dislocation density, a software was improved with which data obtained by Scanning Electron Microscope (SEM) measurements can be collected and the value of superficial dislocation density can be calculated. Applying this method we investigated cold rolled lath martensitic steel samples. Besides dislocation density values, microstructure mapped by Electron Backscatter Diffraction (EBSD) will be discussed.


1999 ◽  
Vol 4 (1) ◽  
pp. 70-70
Author(s):  
Chen Xiaomei ◽  
Liu Jing ◽  
Wang Jianbo ◽  
Zhang Ruikang ◽  
Wang Dahai ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.


2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2012 ◽  
Vol 18 (4) ◽  
pp. 876-884 ◽  
Author(s):  
Joseph R. Michael ◽  
Bonnie B. McKenzie ◽  
Donald F. Susan

AbstractUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2013 ◽  
Vol 46 (1) ◽  
pp. 216-223
Author(s):  
Shan-Rong Zhao ◽  
Hai-Jun Xu ◽  
Rong Liu ◽  
Qin-Yan Wang ◽  
Xian-Yu Liu

Snowflake-shaped dendrites of β-eucryptite–β-quartz solid solution were artificially crystallized in a matt glaze, and the crystallographic orientation of the dendrites was analysed by the electron backscatter diffraction (EBSD) technique. The six branches of a snowflake-shaped dendrite in the plane (0001) are along 〈110〉. From the orientation determination, a twin relationship and a topotactic relationship between dendrites were found. The twin axes are [011], [0{\overline 1}1] and [210], and the twin planes perpendicular to the twin axes are ({\overline 1}2{\overline 1}2) and (1{\overline 2}12). From the reticular theory of twinning, it was calculated that the twin indexn= 2 and the obliquity ω = 3.2877°. The studied dendrite is a twin by reticular pseudomerohedry with low twin index and obliquity. In the topotactic growth, no twin elements have been found, but the three main crystallographic directions 〈001〉, 〈210〉 and 〈110〉 of the two dendritic crystals overlap each other. The degree of lattice coincidence between the two crystals in this topotactic growth is also discussed.


Sign in / Sign up

Export Citation Format

Share Document