Spatial characterisation of natural and third-generation artificial turf football pitches

2006 ◽  
Vol 9 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Alex Kirby ◽  
Stephen J. Spells
Author(s):  
Gabriel Lozano-Berges ◽  
Ángel Matute-Llorente ◽  
Alejandro Gómez-Bruton ◽  
Alex González-Agüero ◽  
Germán Vicente-Rodríguez ◽  
...  

There are different surfaces on which football is played, but their influence on bone mass accretion still remains unknown. The aims of this study were to compare bone mass accretion between football players and controls, and evaluate the influence of two different playing surfaces on bone accretion. A total of 27 male football players (13.2 ± 0.5 years) and 15 controls (12.6 ± 1.1 years) participated in this study. Football players were classified into two groups according to the surface they trained on: 14 on third-generation artificial turf with elastic layer and 13 on third-generation artificial turf without elastic layer. Bone mineral content and areal bone mineral density were measured using dual-energy X-ray absorptiometry. Bone mineral apparent density variables were calculated. Bone geometry and strength of the non-dominant tibia were assessed with peripheral quantitative computed tomography. For both football players and controls, bone variables measured at subtotal body, lumbar spine, legs and tibia ( p < 0.05) significantly increased. Based on the time spent practicing football, the increase in areal bone mineral density for the legs ( p < 0.05) was higher in football players than controls. Moreover, lumbar spine bone mineral apparent density increased more in third-generation artificial turf without elastic layer players in comparison with third-generation artificial turf with elastic layer players ( p < 0.05). Playing football on third-generation artificial turf with elastic layer and third-generation artificial turf without elastic layer seems to positively affect bone mass during growth. After playing for one season on these playing surfaces, football practice on third-generation artificial turf without elastic layer with the lower shock absorption seems to have produced the highest increment in areal bone mineral density at lumbar spine. Thus, football practice on surfaces with lower shock absorption could provide an extra benefit on bone health.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111368 ◽  
Author(s):  
Javier Sánchez-Sánchez ◽  
Jorge García-Unanue ◽  
Pedro Jiménez-Reyes ◽  
Ana Gallardo ◽  
Pablo Burillo ◽  
...  

2016 ◽  
Vol 30 (11) ◽  
pp. 3165-3177 ◽  
Author(s):  
Javier Sánchez-Sánchez ◽  
Jorge García-Unanue ◽  
José L. Felipe ◽  
Pedro Jiménez-Reyes ◽  
David Viejo-Romero ◽  
...  

Author(s):  
Reilly O’Meagher ◽  
John O’Reilly ◽  
Ajmol Ali

Football (soccer) is traditionally played on natural grass but artificial surfaces are becoming an increasing popular alternative. Understanding how different surfaces affect a player's skill performance has not been examined. This study sought to compare soccer skill performance, using a validated test, on natural grass, third generation (3G) artificial turf, and indoor sprung wooden floor. Following familiarisation, 14 male players (12.7 ± 0.5 years-old, with 6.21 years playing experience) performed the Loughborough Soccer Passing Test (LSPT) on three different surfaces in the following order: indoor, grass and artificial turf. Players were given two practise attempts before the best of two trials were recorded. Movement time was faster on artificial turf (45.1 ± 1.3 s) than natural grass (46.2 ± 1.8 s; p = 0.045), but there was no difference in overall LSPT performance between grass (54.1 ± 4.2 s) and artificial turf (54.0 ± 4.7 s; p = 0.92). Overall LSPT performance was better on indoor surface (50.9 ± 4.6 s) than grass (p = 0.02) and artificial turf (p = 0.02) due to reduced penalty time on the indoor surface (5.5 ± 3.3 s) than grass (7.9 ± 2.9 s; p = 0.001) and artificial turf (8.9 ± 3.9 s; p = 0.003). There is no difference in soccer skill performance between grass and 3G artificial turf. Skill performance on an indoor surface was ∼6% better than both grass and 3G artificial turf due to better ball control and/or accuracy of passing. Our findings will enable comparison of studies using the LSPT on indoor and outdoor (grass or artificial) surfaces.


Author(s):  
Paul Richard Fleming ◽  
Charlie Watts ◽  
Stephanie Forrester

High performing and safe outdoor third generation (3G) artificial turf (AT) fields demand high quality initial design and construction coupled with a comprehensive maintenance aftercare regime. However, in many cases maintenance of AT fields suffers from either a low-cost inexpert approach, or a one-size-fits-all generic approach based on general guidance with little to no evidence of effectiveness. Little previous research has addressed fundamental questions regarding how 3G AT systems degrade or have provided evidence of the effectiveness of maintenance interventions. Maintenance techniques currently utilised can be grouped into four separate categories (grooming, cleaning, decompaction and infill top-ups). The maintenance tools and processes for each category have been developed empirically through experience, mainly in response to qualitative observations with little quantitative evidence. This paper reports on a unique body of quantitative evidence of specific effects of maintenance interventions, on third generation AT surfaces (3G), collected over the past several years in collaboration with a major UK sports surface maintenance contractor. In addition, the data contributes new and robust evidence of the rate at which 3G surfaces can ‘lose’ quantities of performance infill corroborated by the rate at which fields were topped up to maintain appropriate infill depths. A new quantified pitch degradation and maintenance benefits model is presented explaining 3G AT system degradation factors and mechanisms, their links to changes in system performance and the magnitudes of change effected by specific maintenance techniques. The new model is of direct benefit to both researchers and practitioners impacting on future best practice for assessing and maintaining the safety and performance of 3G AT.


Sign in / Sign up

Export Citation Format

Share Document