Solanum commersonii cytoplasm does not improve freezing tolerance in substitution backcross hybrids with frost-sensitive potato species

2005 ◽  
Vol 82 (3) ◽  
pp. 251-254 ◽  
Author(s):  
J. B. Bamberg ◽  
J. P. Palta ◽  
S. E. Vega
HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 563g-564
Author(s):  
Laurie S. Weiss ◽  
John B. Bamberg ◽  
Jiwan P. Palta

Solanum acaule (acl) and Solanum commersonii (cmm) represent the extremes of frost tolerance and cold acclimation ability among potato species. We have combined these species with cultivated S. tuberosum (tbr) to develop a potato with desired tuber traits and a high degree of frost tolerance. For this purpose diploid cmm was made 4x and crossed with naturally 4x acl. The F1 and F2 appear to exhibit hybrid vigor for vine growth for flowering, but none had frost tolerance greater than the parents. The F1 and F2 were crossed with S. tuberosum ssp. andigena and Katahdin via 2n eggs resulting in 6x 3-way hybrids. These hybrids were evaluated both in the field and laboratory for frost tolerance and acclimation ability. Results showed an increase of 1°C of frost tolerance and 2°C increase in cold acclimation capacity in the hybrids as compared to the sensitive tbr parents. Some of the 6x (3-way) hybrids produced significant tubers but yield and earliness needs much improvement. These results demonstrate that it should be possible to move both non acclimated freezing tolerance and cold acclimation ability from wild to cultivated species and offer exciting opportunities to enhance potato production in frost prone areas in the world. Supported by USDA/NRI grant 91-3700-6636 to J.P.P. and J.B.B..


1992 ◽  
Vol 84 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Stephen P. Lee ◽  
Baolong Zhu ◽  
Tony H. H. Chen ◽  
Paul H. Li

2021 ◽  
Author(s):  
Feiyan He ◽  
Jianfei Xu ◽  
Yinqiao Jian ◽  
Shaoguang Duan ◽  
Jun Hu ◽  
...  

Abstract Potato (Solanum tuberosum L.) is the fourth largest food crop in the world. Low temperature causes serious damage to potato plants every year, and freezing tolerance has become a hot spot in potato research. Galactinol synthase (GolS) is a key enzyme in the synthesis of raffinose family oligosaccharides (RFOs), and plays an important role in the response of plants to abiotic stress. In this study, the ScGolS1 gene from S. commersonii was cloned and introduced into the S. tuberosum cultivars ‘Atlantic’ and ‘Desiree’ via Agrobacterium-mediated transformation. Phenotyping assay showed that overexpression of the ScGolS1 could significantly improve freezing tolerance in transgenic potato plants. Further physiological and biochemical results showed that the relative conductivity, malondialdehyde (MDA) content, and 3,3'-Diaminobenzidine (DAB) staining of the transgenic lines decreased, and the plant survival rate increased compared with wild type (WT). Moreover, CBF1, CBF2, CBF3, CBF downstream cold responsive genes COR413, COR47 and ERF transcription factor genes ERF3, ERF4, ERF6 in the ethylene signaling pathway were all induced by freezing treatment, while higher levels were observed in ScGolS1 overexpression lines compared with WT. In addition, other genes such as MIPS, STS and RS genes from RFO metabolic pathway and some sugars content were altered in response to freezing treatment. This indicates that overexpression of the ScGolS1 gene induced both the regulation of the ethylene signaling pathway and the metabolism of raffinose series oligosaccharides, regulating the balance of sugar composition and improved anti-peroxidation capacity, and thereby improved freezing tolerance in potato. These results provide theoretical support and genetic resources for freezing tolerance breeding in potato.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 579f-580 ◽  
Author(s):  
Sandra E Vega ◽  
Jiwan P. Palta ◽  
John B. Bamberg

Frost injury limits the cultivation of potatoes in many regions around the world. We are currently studying the factors that contribute to frost survival in potato in an attempt to improve its frost tolerance. Wild potato species have been distinguished for their high degree of non-acclimated frost tolerance (growing under normal conditions) and their high cold acclimation capacity (able to increase frost tolerance upon exposure to cold). Cold acclimation can be reversed upon exposure to warm temperatures (deacclimation). The ability to gain freezing tolerance rapidly in response to low temperatures as well as not being able to deacclimate rapidly in response to warm daytime temperatures would be advantageous for a plant against spring or fall freezes. Last year we presented evidence for the variability in the speed of cold acclimation among 7 wild tuber-bearing potato species (S. acaule, S. commersonii, S. megistacrolobum, S. multidissectum, S. polytrichon, S. sanctae-rosae and S. toralapanum). The same set of species was used for the present study to find out if there is also variability for the speed of deacclimation. Relative freezing tolerance of these species was measured before and after cold acclimation as well as after one day of deacclimation (exposure to warm temperatures). Our results suggest that there are differences in the speed of deacclimation among these species. We found that while some species lost near a half of their hardiness, others lost only a third or less of their hardiness after one day of deacclimation.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 775G-776 ◽  
Author(s):  
Sandra E. Vega-Semorile ◽  
John B. Bamberg ◽  
Jiwan P. Palta

Frost damage to the foliage is a common problem where potatoes are grown, and results in significant reductions in tuber yield. Frost injury also limits the cultivation of high-yielding S. tuberosum cultivars in the mountain regions of Central and South America, where potato is a staple crop. Recent studies have shown that some wild potato species possess a high degree of non-acclimated frost tolerance (growing in normal conditions) as well as high cold acclimation capacity (able to increase frost tolerance upon exposure to cold). Natural frosts affecting potatoes are of two types: a) late spring or early fall frost, where the minimum temperature during the frost episode can be very low; b) frost during the growing season, where the minimum temperature during the frost episode is not as low. It is expected that potato species able to acclimate rapidly would survive better from the latter type of frosts, whereas species having higher acclimation capacity might have a great chance to survive better from the former type of frosts. The objective of this study was to find out if there is genetic variability for the speed of acclimation among different tuber-bearing wild potato species. The species used were: S. acaule, S. commersonii, S. megistacrolobum, S. multidissectum, S. polytrichon, S. sanctae-rosae, and S. toralapanum. Relative freezing tolerance of these species was measured during cold acclimation. Preliminary results suggest that there are differences in the speed of acclimation among these species. We found that these species can be divided into four groups: i) non-acclimators; ii) rapid acclimators, with low to medium acclimation capacity; iii) slow acclimators, with low to medium acclimation capacity; iv) slow acclimators, with high acclimation capacity. We plan to use this information in our breeding program aimed at improving the freezing tolerance of potatoes.


Sign in / Sign up

Export Citation Format

Share Document