Clinical studies in blood lipid metabolism IV. Abnormal lipid metabolism and atherosclerosis: Preliminary report

1952 ◽  
Vol 19 (9) ◽  
pp. 281-283 ◽  
Author(s):  
A. Allen Goldbloom ◽  
Julius Pomeranze
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Cheng ◽  
Ai-Zhen Zhou ◽  
Wen Ge ◽  
Xiao-Min Yao ◽  
Juan Wang

Huo-Xue-Qu-Yu formula (HXQYF) is a prescription consisting of Ginkgo biloba leaf and Paeonia lactiflora Pall. for treating hyperlipidemia and NAFLD in China. Here, we investigated the hepatic and renal function, oxidative stress and lipid metabolism, and potential mechanisms of HXQYF on nonalcoholic fatty liver disease (NAFLD) rat models. NAFLD rat models were induced with high-fat diet (HFD) and 10% fructose water for 18 weeks and orally administered with or without HXQYF simultaneously. The results showed that HXQYF (22.5, 45, 90 mg/kg) significantly improved blood lipid levels via reducing serum TC, TG, LDL-C, and APOB values and elevating HDL-C and APOA1 levels in NAFLD rats. The higher levels of ALT, AST, CR, and BUN in serum induced by HFD were reduced by HXQYF. HE staining showed that HXQYF (90 mg/kg) reduced the accumulation of fat droplets and alleviated inflammatory response in liver cells. Three doses of HXQYF exhibited notable antioxidant effects by elevating SOD, GSH, and CAT activities and decreasing MDA and OH-1 levels in the liver. Furthermore, abnormal lipid metabolism caused by HFD was alleviated by HXQYF, which was associated with the upregulation of PPAR-α, AdipoR2, and CPT1 mRNAs as well as the downregulation of CYP2E1 and SREBP-1c mRNAs in liver tissue. In conclusion, our work verified that HXQYF could reduce the degree of hepatic steatosis, suppress oxidative stress, and attenuate lipid metabolism, thus preventing NAFLD.


Author(s):  
Liping Yang ◽  
Yixuan Hou ◽  
Yan-e Du ◽  
Qiao Li ◽  
Fanlin Zhou ◽  
...  

AbstractThe aberrant classical miRNAs are considered to play significant roles in tumor progression. However, it remains unclear for nonclassical miRNAs, a set of Drosha-independent miRNAs in the process of various biology. Here, we reveal that a nonclassical miR-4646-5p plays a pivotal role in gastric cancer (GC) metastasis. MiR-4646-5p, one of Drosha-independent mirtronic miRNA, is aberrant up-regulated in Drosha-low expressed GC and Drosha-knockdown gastric cancer cells. Mirtronic miR-4646-5p is a specific transcription splicing product of intron 3 of the host gene Abhd16a with the aid of SRSF2. The enhanced miR-4646-5p can stabilize HIF1A by targeting PHD3 to positive feedback regulate Abhd16a and miR-4646-5p itself expressions. ABHD16A, as an emerging phosphatidylserine-specific lipase, involves in lipid metabolism leading to lysophosphatidylserines (lyso-PSs) accumulation, which stimulates RhoA and downstream LIMK/cofilin cascade activity through GPR34/Gi subunit, thus causes metastasis of gastric cancer. In addition, miR-4646-5p/PHD3/HIF1A signaling can also up-regulate RhoA expression and synergistically promote gastric cancer cell invasion and metastasis. Our study provides new insights of nonclassical mirtronic miRNA on tumor progress and may serve as a new diagnostic biomarker for gastric cancer. MiR-4646-5p and its host gene Abhd16a mediated abnormal lipid metabolism may be a new target for clinical treatment of gastric cancer.


2021 ◽  
Vol 12 (5) ◽  
pp. 2323-2334
Author(s):  
Shihong Zheng ◽  
Peichang Cao ◽  
Zequn Yin ◽  
Xuerui Wang ◽  
Yuanli Chen ◽  
...  

Apigenin prevented the DDC-induced abnormal lipid metabolism, liver damage and liver fibrosis by reducing inflammation and oxidative stress. Apigenin might be a potential drug for the treatment of cholestatic liver diseases.


Sign in / Sign up

Export Citation Format

Share Document