scholarly journals NaCl stress in rice seedlings: effects of L-proline, glycinebetaine, L-and D-asparagine on seedling growth

1995 ◽  
Vol 37 (2) ◽  
Author(s):  
C. C. Lin ◽  
C. H. Kao
2013 ◽  
Vol 20 (10) ◽  
pp. 1303-1309 ◽  
Author(s):  
Jing MU ◽  
Xiao-Jing LIU ◽  
Jin XU ◽  
Ren-Zhao MAO ◽  
Wei WEI ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


1970 ◽  
Vol 36 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Munnujan Khanam ◽  
Mohammad Al-Yeasa ◽  
Md Sazzadur Rahman ◽  
Abdullah Al-Mahbub ◽  
AR Gomosta

Laboratory experiments were conducted to study the effect of salt solution, and size and ageing of seeds on growth efficiency of rice seedlings. Variation in growth efficiency due to different factors was significant. Seeds of Pokkali, BRRI dhan 29, BRRI dhan 40 and BRRI dhan 41 rice genotypes were used. Growth efficiency and other seedling characteristics decreased as salinity levels increased. Three varieties of rice BR 14, BRRI dhan 28 and BR 1, which are large, medium and small grain variety, respectively, were used to study the effect of seed size on growth efficiency and seedling growth. All the parameters decreased remarkably with decreasing seed size. Seed size influenced the growth efficiency significantly. For accelerated ageing test five varieties of freshly harvested seeds were used. The tested varieties responded differently for growth efficiency. When the ageing treatments were extended to 72 hours the growth efficiency depressed markedly for most of the varieties. Key words: Growth efficiency, Ageing, Rice, Salt solution, Seedling growth, Seed size DOI = 10.3329/bjb.v36i2.1508 Bangladesh J. Bot. 36(2): 171-176, 2007 (December)


2013 ◽  
Vol 57 (3) ◽  
pp. 567-570 ◽  
Author(s):  
L. J. Ma ◽  
C. M. Yu ◽  
X. M. Li ◽  
Y. Y. Li ◽  
L. L. Wang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 20 (12) ◽  
Author(s):  
Haliatur Rahma ◽  
NURBAILIS ◽  
NILA KRISTINA

Abstract. Rahma H, Nurbailis, Kristina N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. oryzae. Biodiversitas 20: 3654-3661. Xanthomonas oryzae pv. oryzae (Xoo), a major limiting factor in rice production, and the use of resistant Xoo varieties have failed to control the bacterial pathogens as well as increased yield. It is due to the diversity in pathotypes, caused by environmental factors, the nature of resistant variety used, and gene mutation. The aims of this study were to select rhizobacterial strains with the potential of suppressing Xoo growth and promoting the growth of rice seedlings. This experiment was conducted in a completely randomized design (CRD) using seven rhizobacterial isolates selected through a dual culture test, with four replications. There were four isolates that potential in inhibiting the growth of Xoo, namely KJKB5.4, LMTSA5.4, Bacillus cereus AJ34, and Alcaligenes faecalis AJ14, with inhibition diameters greater than 11.50 mm. Rhizobacterial supernatant of 4 potential isolates has a zone of inhibition ranging from 12.25 to 24.00 mm. Four potential isolates were also able to solubilize phosphate, produce indole acetic acid (IAA) growth hormone, and siderophore, as well as enhance the growth of rice seedlings. Based on the nucleic acid sequencing of LMTSA5.4, KJKB5.4, and RK12 isolates were identified as Stenotrophomonas malthopilia strain LMG 958 (99.13%) accession NR 119220.1, Stenotrophomonas pavanii strain LMG 25348 (95.84%) accession NR 118008.1 and Ochrobactrum ciceri strain ca-34 (92.91%) accession NR115819.1.


2018 ◽  
Vol 8 ◽  
pp. 1224-1234
Author(s):  
Saud A. Alamri ◽  
Manzer H Siddiqui ◽  
Mutahhar Y. Al-Khaishani ◽  
Hayssam M. Ali

Boron (B), an essential micronutrient, helps the plants to complete their life cycle successfully. Therefore, the present experiment was conducted to study (1) the role of B in seed germination and seedling growth, (2) the toxicity effect of B in seed germination and seedling growth and (3) the role of B in tolerance of barley (Hordeum vulgare L. var. ‘Bakore’) to NaCl stress. Under NaCl stress and non-stress conditions, application of high levels of B (100 µM) decreased parameters of germination (G%, VI, GI and MGT), growth (RL, SL, RFW, SFW, RDW and SDW), except the accumulation of Pro and MDA in barley seedlings. Also, a fluorescence study reveals that production of ROS (H2O2 and O2 •—) and non-viable cells increased in roots of barley seedlings treated with NaCl and high dose of B. An alteration in anatomical structure of barley seedlings was observed with the application of NaCl and high dose of B. However, a low concentration of B (50 µM) proved best and increased all germination and growth traits of barley seedlings by increasing further accumulation of Pro. Also, 50 µM of B significantly increased the biosynthesis of photosynthetic pigments (Chl a, b and total Chl) and deceased formation of ROS and viable cells in roots. Therefore, concluded that sufficient dose of B could be beneficial for barley plant in improving the tolerance to NaCl stress.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meng-Yao Ma ◽  
Hong-Yuan Ma ◽  
Lei Wang ◽  
Wen-Wen Qi ◽  
Shao-Yang Li ◽  
...  

Soil salinity is important abiotic stress affecting various ecosystems worldwide such as grassland. Distinct ecotypes often evolve within species by natural selection to facilitate adaptation to different types of environmental stress. Leymus chinensis is a perennial rhizomatous grass that is widely distributed in the eastern Eurasian steppe; it has two main ecotypes, namely, yellow-green (YG) and gray-green (GG), which differ in their strategy for coping with salinity stress. Few studies have examined the seed germination of the two ecotypes under salinity stress. In this study, the seed germination and seedling growth of two ecotypes of L. chinensis in response to different levels of salinity (NaCl) stress [0 (control), 20, 50, 100, and 200 mM] were examined. Then, ungerminated seeds were placed under normal conditions to evaluate seedling growth following exposure to salt stress (i.e., regermination). The germination percentage was significantly higher, and the mean germination time was significantly shorter in the GG ecotype than in the YG ecotype at all NaCl concentrations. As the salinity level increased, the radicle length of the two ecotypes decreased; however, GG had longer radicles and a higher number of radicles, even at 200 mM NaCl when no radicle protruding from the seed coat was detected in YG. The shoot length of GG was significantly longer than that of YG at all NaCl levels. After salinity stress was removed, the seed germination percentage increased as the original concentration of NaCl applied increased, but the total germination percentage did not significantly differ among NaCl concentrations. The total seed germination percentage of GG was approximately 80%, whereas that of the YG was approximately 20%. The seedling length of regerminated seeds for both GG and YG was similar. The thousand-grain weight of GG was significantly higher than that of YG. GG was more salt-tolerant than YG and might be better capable of surviving in harsher environments, suggesting that GG might be particularly useful for saline grassland restoration.


Sign in / Sign up

Export Citation Format

Share Document