Alpha 5.28 and 81 MHz discharge of a planar geometry for CO2 slab lasers and plasmachemistry

2004 ◽  
Vol 54 (S3) ◽  
pp. C796-C802
Author(s):  
V. V. Azharonok ◽  
I. I. Filatova ◽  
V. D. Shimanovich ◽  
O. L. Gaiko ◽  
Ya. I. Nekrashevich
Keyword(s):  
2020 ◽  
Vol 23 (7) ◽  
pp. 611-623
Author(s):  
Ahmed A. Soliman ◽  
Fawzy A. Attaby ◽  
Othman I. Alajrawy ◽  
Azza A.A. Abou-hussein ◽  
Wolfgang Linert

Aim and Objective: Platinum (II) and platinum (IV) of pyrophosphate complexes have been prepared and characterized to discover their potential as antitumor drugs. This study was conducted to prepare and characterize new ternary platinum (II) complexes with formamidine and pyrophosphate as an antitumor candidate. Materials and Methods: The complexes have been characterized by mass, infrared, UV-Vis. spectroscopy, elemental analysis, magnetic susceptibility, thermal analyses, and theoretical calculations. They have been tested for their cytotoxicity, which was carried out using the fastcolorimetric assay for cellular growth and survival against MCF-7 (breast cancer cell line), HCT- 116 (colon carcinoma cell line), and HepG-2 (hepatocellular cancer cell line). Results: All complexes are diamagnetic, and the electronic spectral data displayed the bands due to square planar Pt(II) complexes. The optimized complexes structures (1-4) indicated a distorted square planar geometry where O-Pt-O and N-Pt-N bond angles were 82.04°-96.44°, respectively. Conclusion: The complexes showed noticeable cytotoxicity and are considered as promising antitumor candidates for further applications.


2005 ◽  
Author(s):  
Bin Chen ◽  
Ying Chen ◽  
Jed Simmons ◽  
Tu-Yuan Chung ◽  
Michael Bass

New solutions are presented for non-stationary boundary layers induced by planar, cylindrical and spherical Chapman-Jouguet (C-J) detonation waves. The numerical results show that the Prandtl number ( Pr ) has a very significant influence on the boundary-layer-flow structure. A comparison with available time-dependent heat-transfer measurements in a planar geometry in a 2H 2 + O 2 mixture shows much better agreement with the present analysis than has been obtained previously by others. This lends confidence to the new results on boundary layers induced by cylindrical and spherical detonation waves. Only the spherical-flow analysis is given here in detail for brevity.


2003 ◽  
Vol 02 (06) ◽  
pp. 461-468
Author(s):  
D. G. W. PARFITT ◽  
M. E. PORTNOI

The anyon exciton model, which describes an exciton against the background of an incompressible quantum liquid, is generalized to the case of an arbitrary number of anyons. Some mathematical aspects of this quantum-mechanical few-particle problem are considered and several exact solutions are obtained. The four-particle case is also considered in the classical limit in both planar and spherical geometries. Such a classical approach gives an adequate description of an anyon exciton at large separation between the valence hole and the two-dimensional electron gas. It is shown that in this limit in a planar geometry the anyon exciton is always energetically more favorable than a charged anyon ion. This indicates that the appearance of fractionally-charged anyon ions reported in recent numerical calculations is an artefact apparently caused by finite-size effects in a spherical geometry.


2007 ◽  
Vol 79 (17) ◽  
pp. 6857-6861 ◽  
Author(s):  
S. Pau ◽  
W. B. Whitten ◽  
J. M. Ramsey

2006 ◽  
Vol 62 (7) ◽  
pp. m1533-m1534 ◽  
Author(s):  
Han-Na Hou

The title compound, [Cu(C14H15N2O)(NCS)], is a mononuclear copper(II) complex, with two molecules in the asymmetric unit. The CuII ion is coordinated by one O and two N atoms of a Schiff base ligand, and by one N atom of a thiocyanate anion, forming a square-planar geometry.


Author(s):  
Zhe An ◽  
Jing Gao ◽  
William T. A. Harrison

The syntheses and crystal structures of 0.25-aqua(benzene-1,4-dicarboxylato-κ2O,O′)bis(sparfloxacin-κ2O,O′)manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis(sparfloxacin-κ2O,O′)copper(II) benzene-1,4-dicarboxylate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-dicarboxylate). The Mn2+ion in (I) is coordinated by twoO,O′-bidentate Hspar neutral molecules (which exist as zwitterions) and anO,O′-bidentate bdc dianion to generate a distorted MnO6trigonal prism. A very long bond [2.580 (12) Å] from the Mn2+ion to a 0.25-occupied water molecule projects through a square face of the prism. In (II), the Cu2+ion lies on a crystallographic inversion centre and a CuO4square-planar geometry arises from its coordination by twoO,O′-bidentate Hspar molecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intramolecular N—H...O hydrogen bonds, which closeS(6) rings. In the crystals of both (I) and (II), the components are linked by N—H...O, O—H...O and C—H...O hydrogen bonds, generating three-dimensional networks.


2012 ◽  
Vol 9 (2) ◽  
pp. 532-544
Author(s):  
Bibhesh K. Singh ◽  
Narendar Bhojak ◽  
Anant Prakash

Cu(II), Co(II), Ni(II) and Mn(II) complexes of Schiff base derived from 2-aminophenol and pyrrole-2- carbaldehyde have been prepared. The complexes are formed by coordination of N and O atoms of the ligand. Their structures were characterized by physico-chemical and spectroscopic methods. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a tetrahedral/ square planar geometry. The bio-efficacy of the ligand and their complexes has been examined against the growth of bacteriain vitroto evaluate their anti-microbial potential.


Sign in / Sign up

Export Citation Format

Share Document