Pluripotent stem cells isolated from human amniotic fluid and differentiation into pancreatic β-cells

2009 ◽  
Vol 32 (11) ◽  
pp. 873-876 ◽  
Author(s):  
L. Trovato ◽  
R. De Fazio ◽  
M. Annunziata ◽  
S. Sdei ◽  
E. Favaro ◽  
...  
2013 ◽  
Vol 45 (8) ◽  
pp. 669-676 ◽  
Author(s):  
Gianluca Carnevale ◽  
Massimo Riccio ◽  
Alessandra Pisciotta ◽  
Francesca Beretti ◽  
Tullia Maraldi ◽  
...  

2017 ◽  
Vol 312 (5) ◽  
pp. C573-C582 ◽  
Author(s):  
Taku Kaitsuka ◽  
Kohei Kobayashi ◽  
Wakako Otsuka ◽  
Takuya Kubo ◽  
Farzana Hakim ◽  
...  

Artificially generated pancreatic β-cells from pluripotent stem cells are expected for cell replacement therapy for type 1 diabetes. Several strategies are adopted to direct pluripotent stem cells toward pancreatic differentiation. However, a standard differentiation method for clinical application has not been established. It is important to develop more effective and safer methods for generating pancreatic β-cells without toxic or mutagenic chemicals. In the present study, we screened several endogenous factors involved in organ development to identify the factor, which induced the efficiency of pancreatic differentiation and found that treatment with erythropoietin (EPO) facilitated the differentiation of mouse embryonic stem cells (ESCs) into definitive endoderm. At an early stage of differentiation, EPO treatment significantly increased Sox17 gene expression, as a marker of the definitive endoderm. Contrary to the canonical function of EPO, it did not affect the levels of phosphorylated JAK2 and STAT5, but stimulated the phosphorylation of ERK1/2 and Akt. The MEK inhibitor U0126 significantly inhibited EPO-induced Sox17 expression. The differentiation of ESCs into definitive endoderm is an important step for the differentiation into pancreatic and other endodermal lineages. This study suggests a possible role of EPO in embryonic endodermal development and a new agent for directing the differentiation into endodermal lineages like pancreatic β-cells.


2020 ◽  
Vol 9 (9) ◽  
pp. 2838
Author(s):  
Yuki Kiyokawa ◽  
Masahiro Sato ◽  
Hirofumi Noguchi ◽  
Emi Inada ◽  
Yoko Iwase ◽  
...  

Pluripotent stem cells are classified as naïve and primed cells, based on their in vitro growth characteristics and potential to differentiate into various types of cells. Human-induced pluripotent stem cells (iPSCs, also known as epiblast stem cells [EpiSCs]) have limited capacity to differentiate and are slightly more differentiated than naïve stem cells (NSCs). Although there are several in vitro protocols that allow iPSCs to differentiate into pancreatic lineage, data concerning generation of β-cells from these iPSCs are limited. Based on the pluripotentiality of NSCs, it was hypothesized that NSCs can differentiate into pancreatic β-cells when placed under an appropriate differentiation induction condition. We examined whether NSCs can be efficiently induced to form potentially pancreatic β cells after being subjected to an in vitro protocol. Several colonies resembling in vitro-produced β-cell foci, with β-cell-specific marker expression, were observed when NSC-derived embryoid bodies (EBs) were induced to differentiate into β-cell lineage. Conversely, EpiSC-derived EBs failed to form such foci in vitro. Intrapancreatic grafting of the in vitro-formed β-cell foci into nude mice (BALB/c-nu/nu) generated a cell mass containing insulin-producing cells (IPCs), without noticeable tumorigenesis. These NSCs can be used as a promising resource for curing type 1 diabetes.


2013 ◽  
Vol 217 (3) ◽  
pp. S97
Author(s):  
Shaun Michael Kunisaki ◽  
Guihua Jiang ◽  
Julie Di Bernardo ◽  
Andre Monteiro da Rocha ◽  
Luis G. Villa-Diaz ◽  
...  

2017 ◽  
Vol 20 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Larry Sai Weng Loo ◽  
Hwee Hui Lau ◽  
Joanita Binte Jasmen ◽  
Chang Siang Lim ◽  
Adrian Kee Keong Teo

2020 ◽  
Vol 21 (7) ◽  
pp. 2359
Author(s):  
Yi-Hsien Fang ◽  
Saprina P.H. Wang ◽  
Zi-Han Gao ◽  
Sheng-Nan Wu ◽  
Hsien-Yuan Chang ◽  
...  

Mature mammalian hearts possess very limited regenerative potential. The irreversible cardiomyocyte loss after heart injury can lead to heart failure and death. Pluripotent stem cells (PSCs) can differentiate into cardiomyocytes for cardiac repair, but there are obstacles to their clinical application. Among these obstacles is their potential for post-transplant rejection. Although human amniotic fluid-derived stem cells (hAFSCs) are immune privileged, they cannot induce cardiac differentiation. Thus, we generated hAFSC-derived induced PSCs (hAFSC-iPSCs) and used a Wnt-modulating differentiation protocol for the cardiac differentiation of hAFSC-iPSCs. In vitro studies using flow cytometry, immunofluorescence staining, and patch-clamp electrophysiological study, were performed to identify the characteristics of hAFSC-iPSC-derived cardiomyocytes (hAFSC-iPSC-CMs). We injected hAFSC-iPSC-CMs intramuscularly into rat infarcted hearts to evaluate the therapeutic potential of hAFSC-iPSC-CM transplantation. At day 21 of differentiation, the hAFSC-iPSC-CMs expressed cardiac-specific marker (cardiac troponin T), presented cardiomyocyte-specific electrophysiological properties, and contracted spontaneously. Importantly, these hAFSC-iPSC-CMs demonstrated low major histocompatibility complex (MHC) class I antigen expression and the absence of MHC class II antigens, indicating their low immunogenicity. The intramyocardial transplantation of hAFSC-iPSC-CMs restored cardiac function, partially remuscularized the injured region, and reduced fibrosis in the rat infarcted hearts. Therefore, hAFSC-iPSCs are potential candidates for the repair of infarcted myocardium.


Sign in / Sign up

Export Citation Format

Share Document