Chemical peculiarities, mass loss, and final evolution of AGB stars in the magellanic clouds

Author(s):  
P. R. Wood
1988 ◽  
Vol 108 ◽  
pp. 31-37
Author(s):  
P.R. Wood

The Magellanic Clouds are sufficiently close that evolved stars which exhibit chemical peculiarities and the effects of mass loss can be readily observed. Such objects include carbon stars, S stars, long-period variables, OH/IR stars and planetary nebulae. Because of the relatively well-known distances of the Magellanic Clouds, the intrinsic luminosities of these objects can be accurately determined, in contrast to the situation in the Galaxy where the great majority of asymptotic giant branch (AGB) stars occur in the field population. In this review, observations of AGB stars in the Magellanic Clouds will be discussed with particular reference to those features which can shed light on mass loss and chemical peculiarities resulting from stellar evolution.


1998 ◽  
Vol 11 (1) ◽  
pp. 395-395
Author(s):  
S. Nishida ◽  
T. Tanabé ◽  
S. Matsumoto ◽  
T. Onaka ◽  
Y. Nakada ◽  
...  

A systematic near-infrared survey was made for globular clusters in the Magellanic Clouds. Two infrared stars were discovered in NGC419 (SMC) and NGC1783 (LMC). NGC419 and NGC1783 are well-studied rich globular clusters whose turn-off masses and ages are estimated MTO ~ 2.0 Mʘ and т ~1.2 Gyr for NGC419, and MT0 ~ 2.0 Mʘ and т ʘ 0.9 Gyr for NGC1783, respectively. The periods of the infrared light variations were determined to be 540 dfor NGC419IR1 and to be 480 d for NGC1783IR1, respectively. Comparison of the measurements with the period—if magnitude relation for carbon Miras in the LMC by Groenewegen and Whitelock(1996) revealed that the Kmagnitudes of the infrared stars were fainter by about 0.3 — 0.8 magnitude than those predicted by the P — K relation. This deviation can be explained if the infrared stars are surrounded by thick dust shells and are obscured even in the K band. The positions of NGC419IR1and NGC1783IR1 on the P — K diagram suggest that AGB stars with the main sequence masses of about 2 Mʘ start their heavy mass-loss when P ʘ 500 d.


2009 ◽  
Vol 5 (S262) ◽  
pp. 36-43 ◽  
Author(s):  
Paola Marigo ◽  
Léo Girardi ◽  
Alessandro Bressan ◽  
Bernhard Aringer ◽  
Marco Gullieuszik ◽  
...  

AbstractIn spite of its relevance, the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase is one of the most uncertain phases of stellar evolution, and a major source of disagreement between the results of different population synthesis models of galaxies. I will briefly review the existing literature on the subject, and recall the basic prescriptions that have been used to fix the contribution of TP-AGB stars to the integrated light of stellar populations. The simplicity of these prescriptions greatly contrasts with the richness of details provided by present-day databases of AGB stars in the Magellanic Clouds, which are now being extended to other nearby galaxies. I will present the first results of an ongoing study aimed at simulating photometry, chemistry, pulsation, mass loss, dust properties of AGB star populations in resolved and un-resolved galaxies. We test our predictions against observations from various surveys of the Magellanic Clouds (DENIS, 2MASS, OGLE, MACHO, Spitzer, and AKARI). I will discuss the implications and outline the plan of future developments.


1993 ◽  
Vol 155 ◽  
pp. 319-319
Author(s):  
Neill Reid

Asymptotic giant branch stars are the immediate precursors to the planetary nebula stage of stellar evolution. It is clear that the latter stages of a stars life on the AGB are accompanied by either continuous or episodic mass-loss, with the final convulsion being the ejection of the envelope (the future planetary shell), the gradual exposure of the bare CO core and the rapid horizontal evolution to the blue in the H-R diagram. Thus, the structure of the planetary nebula luminosity function, particularly at the higher luminosities (although this phase is extremely rapid), is intimately tied to the luminosity function of the AGB.


1999 ◽  
Vol 191 ◽  
pp. 573-578
Author(s):  
T. Tanabé ◽  
S. Nishida ◽  
Y. Nakada ◽  
T. Onaka ◽  
I. S. Glass ◽  
...  

We performed systematic infrared observations of the intermediate-age Magellanic Clouds clusters NGC 419, NGC 1783 and NGC 1978. Mid-infrared stars discovered in NGC 419 and NGC 1978 are very red and must be undergoing intense mass loss (comparable to superwinds). They are probably carbon stars but do not seem to show any FIR excesses. Three optically visible carbon stars as well as (at least) 2 near-infrared carbon stars observed with ISOPHOT show 60 μm excesses which may indicate mass loss in the past. It seems that the MIR stars are fainter than the AGB tip luminosity and that their Mbols are close to those of the transition luminosity from M type to C stars. Therefore, these MIR stars may not be in the final stage of the AGB phase. This may suggest that AGB stars lose mass heavily at some other time, possibly during the transition from M type to C stars.


1993 ◽  
Vol 155 ◽  
pp. 478-478
Author(s):  
E. Vassiliadis ◽  
P.R. Wood

Stars of mass 1–5 MM⊙ and composition Y=0.25 and Z=0.016 have been evolved from the main-sequence to the white dwarf stage with an empirical mass loss formula based on observations of mass loss rates in AGB stars. This mass loss formula (Wood 1990) causes the mass loss rate to rise exponentially with pulsation period on the AGB until superwind rates are achieved, where these rates correspond to radiation pressure driven mass loss rates. The formula was designed to reproduce the maximum periods observed for optically-visible LPVs and it also reproduces extremely well the maximum AGB luminosities observed in star clusters in the Magellanic Clouds (see Vassiliadis and Wood 1992 for details).


2020 ◽  
Vol 636 ◽  
pp. A48
Author(s):  
M. A. T. Groenewegen ◽  
A. Nanni ◽  
M.-R. L. Cioni ◽  
L. Girardi ◽  
R. de Grijs ◽  
...  

Context. Variability is a key property of stars on the asymptotic giant branch (AGB). Their pulsation period is related to the luminosity and mass-loss rate of the star. Long-period variables (LPVs) and Mira variables are the most prominent of all types of variability of evolved stars. The reddest, most obscured AGB stars are too faint in the optical and have eluded large variability surveys. Aims. We obtained a sample of LPVs by analysing K-band light curves (LCs) of a large number of sources in the direction of the Magellanic Clouds with the colours expected for red AGB stars ((J − K) > 3 mag or equivalent in other colour combinations). Methods. Selection criteria were derived based on colour-colour and colour-magnitude diagrams from the combination of the VISTA Magellanic Cloud (VMC) survey, Spitzer IRAC and AllWISE data. After eliminating LPVs with known periods shorter than 450 days, a sample of 1299 candidate obscured AGB stars was selected. K-band LCs were constructed by combining the epoch photometry available in the VMC survey with literature data, were analysed for variability, and fitted with a single period sine curve to derive mean magnitudes, amplitudes, and periods. A subset of 254 stars are either new variables, known variables where the period we find is better determined than the literature value, or variables with periods longer than 1000 days. The spectral energy distributions (SEDs) of these stars were fitted to a large number of templates. For this purpose the SEDs and Spitzer IRS spectra of some non-AGB stars (Be stars, HII regions and young stellar objects – YSOs) were also fitted to have templates of the most likely contaminants in the sample. Results. A sample of 217 likely LPVs is found. Thirty-four stars have periods longer than 1000 days, although some of them have alternative shorter periods. The longest period of a known Mira in the Magellanic Clouds from Optical Gravitational Lensing Experiment data (with P = 1810 d) is derived to have a period of 2075 d based on its infrared LC. Two stars are found to have longer periods, but both have lower luminosities and smaller pulsation amplitudes than expected for Miras. Mass-loss rates and luminosities are estimated from the template fitting. Period-luminosity relations are presented for carbon (C-) and oxygen (O-) rich Miras that appear to be extensions of relations derived in the literature for shorter periods. The fit for the C stars is particularly well defined (with 182 objects) and reads Mbol = (−2.27 ± 0.20) ⋅ log P + (1.45 ± 0.54) mag with an rms of 0.41 mag. Thirty-four stars show pulsation properties typical of Miras while the SEDs indicate that they are not. Overall, the results of the LC fitting are presented for over 200 stars that are associated with YSOs.


1989 ◽  
Vol 106 ◽  
pp. 224-224
Author(s):  
Yu. L. Frantsman

Simulated populations of white dwarfs and N type carbon stars were generated for a Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and the luminosity distribution of carbon stars is discussed and the results are compared with observations. A significant mass loss by stars on the TP-AGB occurs besides regular stellar wind and planetary nebulae ejection. Thus it is possible to explain the luminosity functions of carbon and M stars in the Magellanic Clouds (with very few stars brighter than Mbol = -6.0), the very narrow mass distribution of white dwarfs, and the very small number of white dwarfs with M > 1.0 MΘ. The luminosity of some AGB stars in the SMC is so high that they may be supernova of type 1 1/2 precursors. There are no such stars in the LMC. Comparison of the theoretical and observed luminosity distributions of high-luminosity AGB stars in the Magellanic Clouds shows that the mass-loss rate of these stars in the LMC is about an order of magnitude larger than in the SMC. In the Galaxy carbon stars may form only from stars with initial mass less than 1.5 MΘ due to the relatively small initial heavy element abundance in these stars; this is perhaps the main reason for the absence of carbon stars in open clusters in the Galaxy.


1999 ◽  
Vol 192 ◽  
pp. 348-355
Author(s):  
Albert A. Zijlstra ◽  
Timothy R. Bedding

Evolved AGB stars pass through a phase of heavy mass loss during which they become optically obscured. We describe an observational program to find and study such stars in the Magellanic Clouds. Many of the obscured stars are found to be luminous carbon stars, a population previously missing. We discuss the Mira PL relation, valid before the onset of the heaviest mass loss. We find that a number of semi-regulars fit this relation, based on Hipparcos parallaxes. No evidence is seen for a Z-dependence, giving a powerful potential distance indicator. We derive a distance modulus to the LMC of m − M = 18.63 ± 0.09 as well as a bright calibration for the Horizontal Branch in globular clusters.


2001 ◽  
pp. 213-214
Author(s):  
P. VENTURA ◽  
F. D’ANTONA ◽  
I. MAZZITELLI

Sign in / Sign up

Export Citation Format

Share Document