scholarly journals Chemical Peculiarities, Mass Loss, and Final Evolution of AGB Stars in the Magellanic Clouds

1988 ◽  
Vol 108 ◽  
pp. 31-37
Author(s):  
P.R. Wood

The Magellanic Clouds are sufficiently close that evolved stars which exhibit chemical peculiarities and the effects of mass loss can be readily observed. Such objects include carbon stars, S stars, long-period variables, OH/IR stars and planetary nebulae. Because of the relatively well-known distances of the Magellanic Clouds, the intrinsic luminosities of these objects can be accurately determined, in contrast to the situation in the Galaxy where the great majority of asymptotic giant branch (AGB) stars occur in the field population. In this review, observations of AGB stars in the Magellanic Clouds will be discussed with particular reference to those features which can shed light on mass loss and chemical peculiarities resulting from stellar evolution.

2017 ◽  
Vol 14 (S339) ◽  
pp. 95-97
Author(s):  
S. Höfner

AbstractEvolved low- and intermediate-mass stars that have reached the Asymptotic Giant Branch (AGB) phase tend to show pronounced long-period variability due to large-amplitude pulsations. Those pulsations are considered to play a key role in triggering mass loss through massive dusty winds. The winds enrich the surrounding interstellar medium with newly-produced chemical elements and dust grains, providing building blocks for new generations of stars and planets. Considerable efforts are being made to understand the physics of AGB stars, and to develop quantitative models. This talk gave a brief summary of recent developments, with references to the literature.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2009 ◽  
Vol 5 (S262) ◽  
pp. 36-43 ◽  
Author(s):  
Paola Marigo ◽  
Léo Girardi ◽  
Alessandro Bressan ◽  
Bernhard Aringer ◽  
Marco Gullieuszik ◽  
...  

AbstractIn spite of its relevance, the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase is one of the most uncertain phases of stellar evolution, and a major source of disagreement between the results of different population synthesis models of galaxies. I will briefly review the existing literature on the subject, and recall the basic prescriptions that have been used to fix the contribution of TP-AGB stars to the integrated light of stellar populations. The simplicity of these prescriptions greatly contrasts with the richness of details provided by present-day databases of AGB stars in the Magellanic Clouds, which are now being extended to other nearby galaxies. I will present the first results of an ongoing study aimed at simulating photometry, chemistry, pulsation, mass loss, dust properties of AGB star populations in resolved and un-resolved galaxies. We test our predictions against observations from various surveys of the Magellanic Clouds (DENIS, 2MASS, OGLE, MACHO, Spitzer, and AKARI). I will discuss the implications and outline the plan of future developments.


2020 ◽  
Vol 637 ◽  
pp. A91 ◽  
Author(s):  
I. El Mellah ◽  
J. Bolte ◽  
L. Decin ◽  
W. Homan ◽  
R. Keppens

Context. The late evolutionary phase of low- and intermediate-mass stars is strongly constrained by their mass-loss rate, which is orders of magnitude higher than during the main sequence. The wind surrounding these cool expanded stars frequently shows nonspherical symmetry, which is thought to be due to an unseen companion orbiting the donor star. The imprints left in the outflow carry information about the companion and also the launching mechanism of these dust-driven winds. Aims. We study the morphology of the circumbinary envelope and identify the conditions of formation of a wind-captured disk around the companion. Long-term orbital changes induced by mass loss and mass transfer to the secondary are also investigated. We pay particular attention to oxygen-rich, that is slowly accelerating, outflows in order to look for systematic differences between the dynamics of the wind around carbon and oxygen-rich asymptotic giant branch (AGB) stars. Methods. We present a model based on a parametrized wind acceleration and a reduced number of dimensionless parameters to connect the wind morphology to the properties of the underlying binary system. Thanks to the high performance code MPI-AMRVAC, we ran an extensive set of 72 three-dimensional hydrodynamics simulations of a progressively accelerating wind propagating in the Roche potential of a mass-losing evolved star in orbit with a main sequence companion. The highly adaptive mesh refinement that we used, enabled us to resolve the flow structure both in the immediate vicinity of the secondary, where bow shocks, outflows, and wind-captured disks form, and up to 40 orbital separations, where spiral arms, arcs, and equatorial density enhancements develop. Results. When the companion is deeply engulfed in the wind, the lower terminal wind speeds and more progressive wind acceleration around oxygen-rich AGB stars make them more prone than carbon-rich AGB stars to display more disturbed outflows, a disk-like structure around the companion, and a wind concentrated in the orbital plane. In these configurations, a large fraction of the wind is captured by the companion, which leads to a significant shrinking of the orbit over the mass-loss timescale, if the donor star is at least a few times more massive than its companion. In the other cases, an increase of the orbital separation is to be expected, though at a rate lower than the mass-loss rate of the donor star. Provided the companion has a mass of at least a tenth of the mass of the donor star, it can compress the wind in the orbital plane up to large distances. Conclusions. The grid of models that we computed covers a wide scope of configurations: We vary the terminal wind speed relative to the orbital speed, the extension of the dust condensation region around the cool evolved star relative to the orbital separation, and the mass ratio, and we consider a carbon-rich and an oxygen-rich donor star. It provides a convenient frame of reference to interpret high-resolution maps of the outflows surrounding cool evolved stars.


1993 ◽  
Vol 155 ◽  
pp. 319-319
Author(s):  
Neill Reid

Asymptotic giant branch stars are the immediate precursors to the planetary nebula stage of stellar evolution. It is clear that the latter stages of a stars life on the AGB are accompanied by either continuous or episodic mass-loss, with the final convulsion being the ejection of the envelope (the future planetary shell), the gradual exposure of the bare CO core and the rapid horizontal evolution to the blue in the H-R diagram. Thus, the structure of the planetary nebula luminosity function, particularly at the higher luminosities (although this phase is extremely rapid), is intimately tied to the luminosity function of the AGB.


1993 ◽  
Vol 139 ◽  
pp. 192-200 ◽  
Author(s):  
S.M.G. Hughes

AbstractNew results (∼last two years) on mainly observational properties of Long Period Variables (LPVs) in the Magellanic Clouds and the Galaxy are reviewed. These properties include the effects of metallicity variations on their mass loss rates, the use of AGB LPVs to map the stellar distributions of the Galactic disk and bulge, and using detailed observations of nearby Miras to investigate their structure and to obtain new parallax distances, with implications for the pulsation mode of Miras.


2018 ◽  
Vol 609 ◽  
pp. A114 ◽  
Author(s):  
M. A. T. Groenewegen ◽  
G. C. Sloan

Context. Mass loss is one of the fundamental properties of asymptotic giant branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking. Aims. We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies (dSphs). Methods. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars in several Local Group galaxies for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. Results. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC (at 4.5 μm) and AllWISE and NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483−7347) are presented. Its current mass is estimated to be 8.5 ± 1.6 M⊙, suggesting an initial mass well above 8 M⊙ in agreement with estimates based on its large Rubidium abundance. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.


1993 ◽  
Vol 153 ◽  
pp. 291-292
Author(s):  
J.A.D.L. Blommaert ◽  
A.G.A. Brown ◽  
H.J. Habing ◽  
W.E.C.J. van der Veen ◽  
Y.K. Ng

We study two different samples of long-period variable Asymptotic Giant Branch (AGB) stars in a field of low and homogeneous extinction towards the Galactic bulge, the Palomar-Groningen field Nr. 3. The samples were selected to study the evolution of the late phases on the AGB. One sample consists of 486 variables (mostly Miras) optically detected and studied by Plaut (1971) and by Wesselink (1987). The other sample is selected from the IRAS Point Source Catalogue and consists of 239 sources. We made additional infrared measurements between 1.2 and 13 μm for a large fraction of both samples. This information was used to identify the IRAS sources and derive the apparent bolometric magnitudes. The samples of Miras and variable IRAS sources have a similar apparent bolometric magnitude distributions, but are displaced by an amount significantly less than expected from the Mira period-luminosity relation (Feast et al. 1989; 0.3 magnitudes as opposed to 0.6 magnitudes). The surface density distribution along the minor axis of the bulge is the same for both samples. We conclude that both samples have evolved from the same parent population and that they represent different evolutionary stages on the AGB. The IRAS sources with the longer periods (on average 450 days (Whitelock et al. 1991) versus on average 250 days for the optical sample) are the further evolved objects. As the IRAS sources have higher mass loss rates we conclude that mass loss increases during the late stages of the evolution. However, we find indications that in some stars the mass loss process has been interrupted for some time; mass loss could be an intermittent process although its overall rate increases in time.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 446
Author(s):  
Devika Kamath ◽  
Hans Van Winckel

Lead (Pb) is predicted to have large over-abundances with respect to other s-process elements in Asymptotic Giant Branch (AGB) stars, especially of low metallicities. However, our previous abundance studies of s-process enriched post-Asymptotic Giant Branch (post-AGB) stars in the Galaxy and the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. For the subset of post-AGB stars with low metallicities the determined upper limits based on detailed chemical abundance studies are much lower than what is predicted. Recent theoretical studies have pointed to the occurrence of the i-process to explain the observed chemical patterns, especially of Pb. A major development, in the observational context, is the release of the GAIA EDR3 parallaxes of the post-AGBs in the Galaxy, which has opened the gateway to systematically studying the sample of stars as a function of current luminosities (which can be linked to their initial masses). In this paper, we succinctly review the Pb discrepancy in post-AGB stars and present the latest observational and theoretical developments in this research landscape.


Sign in / Sign up

Export Citation Format

Share Document