scholarly journals Detection of interdependences in attribute selection

Author(s):  
Javier Lorenzo ◽  
Mario Hernández ◽  
Juan Méndez
Keyword(s):  
1989 ◽  
Vol 28 (02) ◽  
pp. 69-77 ◽  
Author(s):  
R. Haux

Abstract:Expert systems in medicine are frequently restricted to assisting the physician to derive a patient-specific diagnosis and therapy proposal. In many cases, however, there is a clinical need to use these patient data for other purposes as well. The intention of this paper is to show how and to what extent patient data in expert systems can additionally be used to create clinical registries and for statistical data analysis. At first, the pitfalls of goal-oriented mechanisms for the multiple usability of data are shown by means of an example. Then a data acquisition and inference mechanism is proposed, which includes a procedure for controlling selection bias, the so-called knowledge-based attribute selection. The functional view and the architectural view of expert systems suitable for the multiple usability of patient data is outlined in general and then by means of an application example. Finally, the ideas presented are discussed and compared with related approaches.


2019 ◽  
Vol 18 (1) ◽  
pp. 35-55
Author(s):  
Mohammad Aizat Basir ◽  
Yuhanis Yusof ◽  
Mohamed Saifullah Hussin

Author(s):  
Mustafa S. Abd ◽  
Suhad Faisal Behadili

Psychological research centers help indirectly contact professionals from the fields of human life, job environment, family life, and psychological infrastructure for psychiatric patients. This research aims to detect job apathy patterns from the behavior of employee groups in the University of Baghdad and the Iraqi Ministry of Higher Education and Scientific Research. This investigation presents an approach using data mining techniques to acquire new knowledge and differs from statistical studies in terms of supporting the researchers’ evolving needs. These techniques manipulate redundant or irrelevant attributes to discover interesting patterns. The principal issue identifies several important and affective questions taken from a questionnaire, and the psychiatric researchers recommend these questions. Useless questions are pruned using the attribute selection method. Moreover, pieces of information gained through these questions are measured according to a specific class and ranked accordingly. Association and a priori algorithms are used to detect the most influential and interrelated questions in the questionnaire. Consequently, the decisive parameters that may lead to job apathy are determined.


2010 ◽  
Vol 22 (1-2) ◽  
pp. 2 ◽  
Author(s):  
Sabita Mahapatra ◽  
Sreekumar ◽  
S.S. Mahapatra

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 27
Author(s):  
Jared McCune ◽  
Alex Riley ◽  
Bernard Chen

Wineinformatics is a new data science research area that focuses on large amounts of wine-related data. Most of the current Wineinformatics researches are focused on supervised learning to predict the wine quality, price, region and weather. In this research, unsupervised learning using K-means clustering with optimal K search and filtration process is studied on a Bordeaux-region specific dataset to form clusters and find representative wines in each cluster. 14,349 wines representing the 21st century Bordeaux dataset are clustered into 43 and 13 clusters with detailed analysis on the number of wines, dominant wine characteristics, average wine grades, and representative wines in each cluster. Similar research results are also generated and presented on 435 elite wines (wines that scored 95 points and above on a 100 points scale). The information generated from this research can be beneficial to wine vendors to make a selection given the limited number of wines they can realistically offer, to connoisseurs to study wines in a target region/vintage/price with a representative short list, and to wine consumers to get recommendations. Many possible researches can adopt the same process to analyze and find representative wines in different wine making regions/countries, vintages, or pivot points. This paper opens up a new door for Wineinformatics in unsupervised learning researches.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruben Pawellek ◽  
Jovana Krmar ◽  
Adrian Leistner ◽  
Nevena Djajić ◽  
Biljana Otašević ◽  
...  

AbstractThe charged aerosol detector (CAD) is the latest representative of aerosol-based detectors that generate a response independent of the analytes’ chemical structure. This study was aimed at accurately predicting the CAD response of homologous fatty acids under varying experimental conditions. Fatty acids from C12 to C18 were used as model substances due to semivolatile characterics that caused non-uniform CAD behaviour. Considering both experimental conditions and molecular descriptors, a mixed quantitative structure–property relationship (QSPR) modeling was performed using Gradient Boosted Trees (GBT). The ensemble of 10 decisions trees (learning rate set at 0.55, the maximal depth set at 5, and the sample rate set at 1.0) was able to explain approximately 99% (Q2: 0.987, RMSE: 0.051) of the observed variance in CAD responses. Validation using an external test compound confirmed the high predictive ability of the model established (R2: 0.990, RMSEP: 0.050). With respect to the intrinsic attribute selection strategy, GBT used almost all independent variables during model building. Finally, it attributed the highest importance to the power function value, the flow rate of the mobile phase, evaporation temperature, the content of the organic solvent in the mobile phase and the molecular descriptors such as molecular weight (MW), Radial Distribution Function—080/weighted by mass (RDF080m) and average coefficient of the last eigenvector from distance/detour matrix (Ve2_D/Dt). The identification of the factors most relevant to the CAD responsiveness has contributed to a better understanding of the underlying mechanisms of signal generation. An increased CAD response that was obtained for acetone as organic modifier demonstrated its potential to replace the more expensive and environmentally harmful acetonitrile.


2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


Sign in / Sign up

Export Citation Format

Share Document