Effects of the ganglion cell response nonlinear mapping on visual system’s noise filtering characteristics

Author(s):  
László Orzó
2017 ◽  
Vol 9 (36) ◽  
pp. 30318-30328 ◽  
Author(s):  
Adina Badea ◽  
Joselle M. McCracken ◽  
Emily G. Tillmaand ◽  
Mikhail E. Kandel ◽  
Aaron W. Oraham ◽  
...  

1985 ◽  
Vol 53 (6) ◽  
pp. 1431-1443 ◽  
Author(s):  
G. W. Maguire ◽  
E. L. Smith

Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography (HPLC) with electrochemical detection of endogenous dopamine content and by [3H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [3H]dopamine uptake compared with that of their matched controls. Normal appearing [3H]GABA and [3H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry. When functioning normally, the dopaminergic AC of the cat's retina appears to make the receptive field of the off-center cell more sustained and may make its spatial summation characteristics more linear while adjusting the intensitive properties of neurons in both the on- and off-center pathways.


1974 ◽  
Vol 238 (2) ◽  
pp. 251-267 ◽  
Author(s):  
N. A. M. Schellart ◽  
H. Spekreijse ◽  
T. J. T. P. van den Berg

1987 ◽  
Vol 90 (2) ◽  
pp. 229-259 ◽  
Author(s):  
M Sakuranaga ◽  
Y Ando ◽  
K Naka

Responses were evoked from ganglion cells in catfish and frog retinas by a Gaussian modulation of the mean luminance. An algorithm was devised to decompose intracellularly recorded responses into the slow and spike components and to extract the time of occurrence of a spike discharge. The dynamics of both signals were analyzed in terms of a series of first-through third-order kernels obtained by cross-correlating the slow (analog) or spike (discrete or point process) signals against the white-noise input. We found that, in the catfish, (a) the slow signals were composed mostly of postsynaptic potentials, (b) their linear components reflected the dynamics found in bipolar cells or in the linear response component of type-N (sustained) amacrine cells, and (c) their nonlinear components were similar to those found in either type-N or type-C (transient) amacrine cells. A comparison of the dynamics of slow and spike signals showed that the characteristic linear and nonlinear dynamics of slow signals were encoded into a spike train, which could be recovered through the cross-correlation between the white-noise input and the spike (point process signals. In addition, well-defined spike correlates could predict the observed slow potentials. In the spike discharges from frog ganglion cells, the linear (or first-order) kernels were all inhibitory, whereas the second-order kernels had characteristics of on-off transient excitation. The transient and sustained amacrine cells similar to those found in catfish retina were the sources of the nonlinear excitation. We conclude that bipolar cells and possibly the linear part of the type-N cell response are the source of linear, either excitatory or inhibitory, components of the ganglion cell responses, whereas amacrine cells are the source of the cells' static nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document