Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups

Author(s):  
V. I. Ogievetsky
2018 ◽  
Vol 28 (5) ◽  
pp. 339-344
Author(s):  
Andrey V. Zyazin ◽  
Sergey Yu. Katyshev

Abstract Necessary conditions for power commuting in a finite-dimensional algebra over a field are presented.


2013 ◽  
Vol 28 (23) ◽  
pp. 1350107 ◽  
Author(s):  
ANDREI MIKHAILOV ◽  
ALBERT SCHWARZ ◽  
RENJUN XU

In the study of the Type II superstring, it is useful to consider the BRST complex associated to the sum of two pure spinors. The cohomology of this complex is an infinite-dimensional vector space. It is also a finite-dimensional algebra over the algebra of functions of a single pure spinor. In this paper we study the multiplicative structure.


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


Author(s):  
Claus Michael Ringel

Let [Formula: see text] be a finite-dimensional algebra. If [Formula: see text] is self-injective, then all modules are reflexive. Marczinzik recently has asked whether [Formula: see text] has to be self-injective in case all the simple modules are reflexive. Here, we exhibit an 8-dimensional algebra which is not self-injective, but such that all simple modules are reflexive (actually, for this example, the simple modules are the only non-projective indecomposable modules which are reflexive). In addition, we present some properties of simple reflexive modules in general. Marczinzik had motivated his question by providing large classes [Formula: see text] of algebras such that any algebra in [Formula: see text] which is not self-injective has simple modules which are not reflexive. However, as it turns out, most of these classes have the property that any algebra in [Formula: see text] which is not self-injective has simple modules which are not even torsionless.


1998 ◽  
Vol 13 (28) ◽  
pp. 4889-4911 ◽  
Author(s):  
M. CALIXTO ◽  
V. ALDAYA ◽  
J. GUERRERO

The algebra of linear and quadratic functions of basic observables on the phase space of either the free particle or the harmonic oscillator possesses a finite-dimensional anomaly. The quantization of these systems outside the critical values of the anomaly leads to a new degree of freedom which shares its internal character with spin, but nevertheless features an infinite number of different states. Both are associated with the transformation properties of wave functions under the Weyl-symplectic group [Formula: see text]. The physical meaning of this new degree of freedom can be established, with a major scope, only by analyzing the quantization of an infinite-dimensional algebra of diffeomorphisms generalizing string symmetry and leading to more general extended objects.


1995 ◽  
Vol 38 (1) ◽  
pp. 63-76 ◽  
Author(s):  
B. A. F. Wehrfritz

Let V be a left vector space over the arbitrary division ring D and G a locally nilpotent group of finitary automorphisms of V (automorphisms g of V such that dimDV(g-1)<∞) such that V is irreducible as D-G bimodule. If V is infinite dimensional we show that such groups are very rare, much rarer than in the finite-dimensional case. For example we show that if dimDV is infinite then dimDV = |G| = ℵ0 and G is a locally finite q-group for some prime q ≠ char D. Moreover G is isomorphic to a finitary linear group over a field. Examples show that infinite-dimensional such groups G do exist. Note also that there exist examples of finite-dimensional such groups G that are not isomorphic to any finitary linear group over a field. Generally the finite-dimensional examples are more varied.


2006 ◽  
Vol 182 ◽  
pp. 47-134 ◽  
Author(s):  
Susumu Ariki ◽  
Andrew Mathas ◽  
Hebing Rui

AbstractNazarov [Naz96] introduced an infinite dimensional algebra, which he called the affine Wenzl algebra, in his study of the Brauer algebras. In this paper we study certain “cyclotomic quotients” of these algebras. We construct the irreducible representations of these algebras in the generic case and use this to show that these algebras are free of rank rn(2n−1)!! (when Ω is u-admissible). We next show that these algebras are cellular and give a labelling for the simple modules of the cyclotomic Nazarov-Wenzl algebras over an arbitrary field. In particular, this gives a construction of all of the finite dimensional irreducible modules of the affine Wenzl algebra.


Sign in / Sign up

Export Citation Format

Share Document