Nonlinear dynamics of polymer crystals. Soliton models of structural defects in the polyethylene crystals

Author(s):  
L. I. Manevitch ◽  
N. G. Ryvkina



2016 ◽  
Vol 138 (27) ◽  
pp. 8505-8511 ◽  
Author(s):  
Munehiro Inukai ◽  
Satoshi Horike ◽  
Tomoya Itakura ◽  
Ryota Shinozaki ◽  
Naoki Ogiwara ◽  
...  


2000 ◽  
Vol 160 (1) ◽  
pp. 249-260
Author(s):  
L.I. Manevitch ◽  
A.V. Savin


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.



Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.



Author(s):  
M. Libera ◽  
J.A. Ott ◽  
K. Siangchaew ◽  
L. Tsung

Channeling occurs when fast electrons follow atomic strings in a crystal where there is a minimum in the potential energy (1). Channeling has a strong effect on high-angle scattering. Deviations in atomic position along a channel due to structural defects or thermal vibrations increase the probability of scattering (2-5). Since there are no extended channels in an amorphous material the question arises: for a given material with constant thickness, will the high-angle scattering be higher from a crystal or a glass?Figure la shows a HAADF STEM image collected using a Philips CM20 FEG TEM/STEM with inner and outer collection angles of 35mrad and lOOmrad. The specimen (6) was a cross section of singlecrystal Si containing: amorphous Si (region A), defective Si containing many stacking faults (B), two coherent Ge layers (CI; C2), and a contamination layer (D). CBED patterns (fig. lb), PEELS spectra, and HAADF signals (fig. lc) were collected at 106K and 300K along the indicated line.



Author(s):  
Philippe Pradère ◽  
Edwin L. Thomas

High Resolution Electron Microscopy (HREM) is a very powerful technique for the study of crystal defects at the molecular level. Unfortunately polymer crystals are beam sensitive and are destroyed almost instantly under the typical HREM imaging conditions used for inorganic materials. Recent developments of low dose imaging at low magnification have nevertheless permitted the attainment of lattice images of very radiation sensitive polymers such as poly-4-methylpentene-1 and enabled molecular level studies of crystal defects in somewhat more resistant ones such as polyparaxylylene (PPX) [2].With low dose conditions the images obtained are very noisy. Noise arises from the support film, photographic emulsion granularity and in particular, the statistical distribution of electrons at the typical doses of only few electrons per unit resolution area. Figure 1 shows the shapes of electron distribution, according to the Poisson formula :



Author(s):  
F. Banhart ◽  
F.O. Phillipp ◽  
R. Bergmann ◽  
E. Czech ◽  
M. Konuma ◽  
...  

Defect-free silicon layers grown on insulators (SOI) are an essential component for future three-dimensional integration of semiconductor devices. Liquid phase epitaxy (LPE) has proved to be a powerful technique to grow high quality SOI structures for devices and for basic physical research. Electron microscopy is indispensable for the development of the growth technique and reveals many interesting structural properties of these materials. Transmission and scanning electron microscopy can be applied to study growth mechanisms, structural defects, and the morphology of Si and SOI layers grown from metallic solutions of various compositions.The treatment of the Si substrates prior to the epitaxial growth described here is wet chemical etching and plasma etching with NF3 ions. At a sample temperature of 20°C the ion etched surface appeared rough (Fig. 1). Plasma etching at a sample temperature of −125°C, however, yields smooth and clean Si surfaces, and, in addition, high anisotropy (small side etching) and selectivity (low etch rate of SiO2) as shown in Fig. 2.





Sign in / Sign up

Export Citation Format

Share Document