Global fluorescence analysis in micellar systems

Author(s):  
A. Malliaris
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


2020 ◽  
Vol 86 (10) ◽  
pp. 5-9
Author(s):  
D. G. Filatova ◽  
A. A. Arkhipenko ◽  
M. A. Statkus ◽  
V. V. Es’kina ◽  
V. B. Baranovskaya ◽  
...  

An approach to sorptive separation of Se (IV) from solutions on a novel S,N-containing sorbent with subsequent determination of the analyte in the sorbent phase by micro-x-ray fluorescence method is presented. The sorbent copolymethylenesulfide-N-alkyl-methylenamine (CMA) was synthesized using «snake in the cage» procedure and proven to be stable in acid solutions. Conditions for quantitative extraction of Se (IV) were determined: sorption in 5 M HCl or 0.05 M HNO3 solutions when heated to 60°C, phase contact time being 1 h. The residual selenium content in the solution was determined by inductively coupled plasma mass spectrometry (ICP-MS) using 82Se isotope. The absence of selenium losses is proved and the mechanism of sorption interaction under specified conditions is proposed. The method of micro-x-ray fluorescence analysis (micro-RFA) with mapping revealed a uniform distribution of selenium on the sorbent surface. The possibility of determining selenium in the sorbent phase by micro-RFA is shown. When comparing the obtained results with the results of calculations by the method of fundamental parameters, it is shown the necessity of using standard samples of sorbates to obtain correct results of RFA determination of selenium in the sorbent phase.


2020 ◽  
Vol 94 (11) ◽  
pp. 2291-2298
Author(s):  
E. V. Poleeva ◽  
A. T. Arymbaeva ◽  
A. I. Bulavchenko

1997 ◽  
Vol 62 (11) ◽  
pp. 1730-1736 ◽  
Author(s):  
Petr Munk ◽  
Zdeněk Tuzar ◽  
Karel Procházka

When two electrolyte solutions are separated and only some of the ions can cross the boundary, the concentrations of these ions are different on both sides of the boundary. This is the well-known Donnan effect. When weak electrolytes are involved, the imbalance includes also hydrogen ions: there is a difference of pH across the boundary and the dissociation of nondiffusible weak electrolytes is suppressed. The effect is very pronounced when the concentration of the weak electrolyte is high and ionic strength is low. The significance of this phenomenon is discussed for polyelectrolyte solutions, and particularly for block copolymer micelles with weak polyelectrolyte shells. The effect is quite dramatic in the latter case.


1993 ◽  
Vol 58 (10) ◽  
pp. 2290-2304 ◽  
Author(s):  
Zuzana Limpouchová ◽  
Karel Procházka

Monte Carlo simulations of chain conformations in a restricted spherical volume at relatively high densities of segments were performed for various numbers of chains, N, and chain lengths (number of segments), L, on a tetrahedral lattice. All chains are randomly end-tethered to the surface of the sphere. A relatively uniform surface density of the tethered ends is guaranteed in our simulations. A simultaneous self-avoiding walk of all chains creates starting conformations for a subsequent equilibration. A modified algorithm similar to that of Siepmann and Frenkel is used for the equilibration of the chain conformations. In this paper, only a geometrical excluded volume effect of segments is considered. Various structural and conformational characteristics, e.g. segment densities gS(r), free end densities gF(r) as functions of the position in the sphere (a distance from the center), distributions of the tethered-to-free end distances, ρTF(rTF), etc. are calculated and their physical meaning is discussed. The model is suitable for studies of chain conformations is swollen cores of multimolecular block copolymer micelles and for interpretation of non-radiative excitation energy migration in polymeric micellar systems.


Sign in / Sign up

Export Citation Format

Share Document