scholarly journals The Sivers asymmetry in hadronic dijet production

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Zhong-Bo Kang ◽  
Kyle Lee ◽  
Ding Yu Shao ◽  
John Terry

Abstract We study the single spin asymmetry in the back-to-back dijet production in transversely polarized proton-proton collisions. Such an asymmetry is generated by the Sivers functions in the incoming polarized proton. We propose a QCD formalism in terms of the transverse momentum dependent parton distribution functions, which allow us to resum the large logarithms that arise in the perturbative calculations. We make predictions for the Sivers asymmetry of hadronic dijet production at the kinematic region that is relevant to the experiment at the Relativistic Heavy Ion Collider (RHIC). We further compute the spin asymmetries in the selected positive and negative jet charge bins, to separate the contributions from u- and d-quark Sivers functions. We find that both the sign and size of our numerical results are roughly consistent with the preliminary results from the STAR collaboration at the RHIC.

2018 ◽  
Vol 46 ◽  
pp. 1860011
Author(s):  
Yaping Wang

One of the primary goals of the spin physics program at STAR is to constrain the polarized gluon distribution function, [Formula: see text], by measuring the longitudinal double-spin asymmetry ([Formula: see text]) of various final-state channels. Using a jet in the mid-rapidity region [Formula: see text] correlated with an azimuthally back-to-back [Formula: see text] in the forward rapidity region [Formula: see text] provides a new possibility to access the [Formula: see text] distribution at Bjorken-[Formula: see text] down to 0.01. Compared to inclusive jet or inclusive [Formula: see text] measurements, this channel also allows to constrain the initial parton kinematics. In these proceedings, we will present the status of the analysis of the [Formula: see text]-jet [Formula: see text] in longitudinally polarized proton+proton collisions at [Formula: see text] =510 GeV with 80 pb[Formula: see text] of data taken during the 2012 RHIC run. We also compare the projected [Formula: see text] uncertainties to theoretical predictions of the [Formula: see text] by next-to-leading order (NLO) model calculations with different polarized parton distribution functions.


2016 ◽  
Vol 40 ◽  
pp. 1660040 ◽  
Author(s):  
J. Kevin Adkins ◽  
James L. Drachenberg

Single spin asymmetry measurements ([Formula: see text]) of the azimuthal distribution of charged pions inside jets produced in transversely polarized proton collisions are sensitive to the transversity distribution and the Collins fragmentation function. The STAR Detector at the Relativistic Heavy Ion Collider is well suited for these types of measurements as it is capable of full jet reconstruction and charged pion identification in the mid-rapidity region ([Formula: see text][Formula: see text][Formula: see text][Formula: see text]). We report here the first observation of Collins [Formula: see text] asymmetries in [Formula: see text] GeV [Formula: see text] collisions.


2020 ◽  
Vol 235 ◽  
pp. 03002
Author(s):  
Qinghua Xu

Polarized proton-proton collisions at the Relativistic Heavy Ion Collider (RHIC) provide unique opportunities to study the spin structure of the nucleon. We will highlight recent results on the nucleon spin structure from the STAR and PHENIX experiments at RHIC: (1) A sizable gluon polarization in the proton is measured with longitudinal double spin asymmetries of jet and hadron production; (2) Longitudinal single spin asymmetries in W boson production improve constraints on the sea quark polarization. The new spin asymmetry results for W boson confirmed the SU(2) flavor asymmetry of the light sea quark polarization in the proton; (3) Transverse spin effects in hadronic systems offer new implications on parton distribution functions in the collinear and transverse momentum dependent frameworks. We will also discuss near term plans for the STAR forward detector upgrade and prospects for proton-proton and protonion collisions in the years beyond 2021 at STAR.


2022 ◽  
Vol 258 ◽  
pp. 03002
Author(s):  
Hui Li ◽  
Xiaoyu Wang ◽  
Zhun Lu

We study the single-spin asymmetry ATsin(2ϕ−ϕS) in the pion-induced Drell-Yan process within the transverse momentum dependent factorization (TMD factorization). The asymmetry can be expressed as the convolution of the Boer-Mulders function and the transversity function. We numerically estimate the asymmetry ATsin(2ϕ−ϕS) at the COMPASS kinematics with the model results for the pion meson distributions from the light-cone wave function approach and the available parametrization for the proton distributions. We also include the TMD evolution formalism both proton and pion parton distribution functions by using two different parametrizations on nonperturbative Sudakov form factor. We find that the asymmetry ATsin(2ϕ−ϕS) as functions of xp, xπ, xF and q⊥ is qualitatively consistent with the recent COMPASS measurement.


2019 ◽  
Vol 222 ◽  
pp. 01004 ◽  
Author(s):  
Grigory Nigmatkulov

We present recent physics results from the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The proceedings cover studies of azimuthal anisotropy in small and large systems, global and local hyperon polarization, correlation femtoscopy, antideuteron and J/ψ production from heavyion program as well as the measurements of longitudinal spin asymmetry from polarized proton program.


2009 ◽  
Vol 24 (35n37) ◽  
pp. 3033-3044 ◽  
Author(s):  
◽  
OLEG DENISOV

The study of Drell–Yan (DY) processes involving the collision of an (un)polarised hadron beam on an (un)polarised proton target can result in a fundamental improvement of our knowledge on the transverse momentum dependent (TMDs) parton distribution functions (PDFs) of hadrons. The production mechanism of J/ψ and J/ψ - DY duality can also be addressed. One of the forthcoming polarised DY experiments (COMPASS (SPS, CERN)) is discussed in this context. The most important features of this project are briefly reviewed, as well as its sensitivity to the various transverse momentum dependent spin asymmetries.


2011 ◽  
Vol 04 ◽  
pp. 115-125
Author(s):  
LEONARD GAMBERG ◽  
ASMITA MUKHERJEE ◽  
P. J. MULDERS

Gluonic pole matrix elements explain the appearance of single spin asymmetries (SSA) in high-energy scattering processes. They involve a combination of operators which are odd under time reversal (T-odd). Such matrix elements appear in principle both for parton distribution functions and parton fragmentation functions. We show that for parton fragmentation functions these gluonic pole matrix elements vanish as a consequence of the analytic structure of scattering amplitudes in Quantum Chromodynamics. We extend this analysis to the case of multi-partonic pole matrix elements. This result is important in the study of the universality of transverse momentum dependent (TMD) fragmentation functions.


2016 ◽  
Vol 40 ◽  
pp. 1660016 ◽  
Author(s):  
Emanuele R. Nocera

I review the current status of the determination of helicity-dependent, or polarized, parton distribution functions from a comprehensive analysis of experimental data in perturbative quantum chromodynamics. I illustrate the latest achievements driven by new measurements in polarized proton-proton collisions at the Relativistic Heavy Ion Collider, namely the first evidence of a sizable polarized light sea quark asymmetry and of a positive polarized gluon distribution in the proton. I discuss which are the open issues in the determination of polarized distributions, and how these may be addressed in the future by ongoing, planned and proposed experimental programs.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Zhong-Bo Kang ◽  
Kyle Lee ◽  
Ding Yu Shao ◽  
Fanyi Zhao

Abstract We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, ep → e + jet + X, as well as the associated jet fragmentation process, ep → e+jet(h)+X, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.


2016 ◽  
Vol 40 ◽  
pp. 1660045 ◽  
Author(s):  
Zhun Lu ◽  
Wenjuan Mao

The single-spin asymmetry [Formula: see text] of charged and neutral pion production in semi-inclusive deep-inelastic scattering on longitudinally polarized nucleon targets is studied. We particularly consider the effects of the twist-3 transverse-momentum dependent distribution functions [Formula: see text] and [Formula: see text], which are calculated in two different spectator-diquark models. We estimate the asymmetry for [Formula: see text], [Formula: see text] and [Formula: see text] produced off the proton target at HERMES and compare the results with the HERMES measurements. We also predict the same asymmetric moment for different pions at the kinematics of CLAS 5.5 GeV on a proton target, as well as at COMPASS on a deuteron target for comparison.


Sign in / Sign up

Export Citation Format

Share Document