scholarly journals Wilson loops in circular quiver SCFTs at strong coupling

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Hao Ouyang

Abstract We study circular BPS Wilson loops in the $$ \mathcal{N} $$ N = 2 superconformal n-node quiver theories at large N and strong ’t Hooft coupling by using localization. We compute the expectation values of Wilson loops in the limit when the ’t Hooft couplings are hierarchically different and when they are nearly equal. Based on these results, we make a conjecture for arbitrary strong couplings.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Beccaria ◽  
A. A. Tseytlin

Abstract Starting with some known localization (matrix model) representations for correlators involving 1/2 BPS circular Wilson loop $$ \mathcal{W} $$ W in $$ \mathcal{N} $$ N = 4 SYM theory we work out their 1/N expansions in the limit of large ’t Hooft coupling λ. Motivated by a possibility of eventual matching to higher genus corrections in dual string theory we follow arXiv:2007.08512 and express the result in terms of the string coupling $$ {g}_{\mathrm{s}}\sim {g}_{\mathrm{YM}}^2\sim \lambda /N $$ g s ∼ g YM 2 ∼ λ / N and string tension $$ T\sim \sqrt{\lambda } $$ T ∼ λ . Keeping only the leading in 1/T term at each order in gs we observe that while the expansion of $$ \left\langle \mathcal{W}\right\rangle $$ W is a series in $$ {g}_{\mathrm{s}}^2/T $$ g s 2 / T , the correlator of the Wilson loop with chiral primary operators $$ {\mathcal{O}}_J $$ O J has expansion in powers of $$ {g}_{\mathrm{s}}^2/{T}^2 $$ g s 2 / T 2 . Like in the case of $$ \left\langle \mathcal{W}\right\rangle $$ W where these leading terms are known to resum into an exponential of a “one-handle” contribution $$ \sim {g}_{\mathrm{s}}^2/T $$ ∼ g s 2 / T , the leading strong coupling terms in $$ \left\langle {\mathcal{WO}}_J\right\rangle $$ WO J sum up to a simple square root function of $$ {g}_{\mathrm{s}}^2/{T}^2 $$ g s 2 / T 2 . Analogous expansions in powers of $$ {g}_{\mathrm{s}}^2/T $$ g s 2 / T are found for correlators of several coincident Wilson loops and they again have a simple resummed form. We also find similar expansions for correlators of coincident 1/2 BPS Wilson loops in the ABJM theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A. Hasan

Abstract We consider U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory and discuss how to extract the strong coupling limit of non-planar corrections to observables involving the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop. Our approach is based on a suitable saddle point treatment of the Eynard-Orantin topological recursion in the Gaussian matrix model. Working directly at strong coupling we avoid the usual procedure of first computing observables at finite planar coupling λ, order by order in 1/N, and then taking the λ ≫ 1 limit. In the proposed approach, matrix model multi-point resolvents take a simplified form and some structures of the genus expansion, hardly visible at low order, may be identified and rigorously proved. As a sample application, we consider the expectation value of multiple coincident circular supersymmetric Wilson loops as well as their correlator with single trace chiral operators. For these quantities we provide novel results about the structure of their genus expansion at large tension, generalising recent results in arXiv:2011.02885.


2018 ◽  
Vol 175 ◽  
pp. 12010
Author(s):  
Akihiro Shibata ◽  
Seikou Kato ◽  
Kei-Ichi Kondo ◽  
Ryutaro Matsudo

We study the double-winding Wilson loops in the SU(N) Yang-Mills theory on the lattice. We discuss how the area law falloff of the double-winding Wilson loop average is modified by changing the enclosing contours C1 and C2 for various values of the number of color N. By using the strong coupling expansion, we evaluate the double-winding Wilson loop average in the lattice SU(N) Yang-Mills theory. Moreover, we compute the double-winding Wilson loop average by lattice Monte Carlo simulations for SU(2) and SU(3). We further discuss the results from the viewpoint of the Non-Abelian Stokes theorem in the higher representations.


Author(s):  
YUJI SATOH

We discuss gluon scattering amplitudes/null-polygonal Wilson loops of [Formula: see text] super Yang-Mills theory at strong coupling based on the gauge/string duality and its underlying integrability. We focus on the amplitudes/Wilson loops corresponding to the minimal surfaces in AdS3, which are described by the thermodynamic Bethe ansatz equations of the homogeneous sine-Gordon model. Using conformal perturbation theory and an interesting relation between the g-function (boundary entropy) and the T-function, we derive analytic expansions around the limit where the Wilson loops become regular-polygonal. We also compare our analytic results with those at two loops, to find that the rescaled remainder functions are close to each other for all multi-point amplitudes.


2013 ◽  
Vol 68 (1-2) ◽  
pp. 178-209 ◽  
Author(s):  
Albrecht Klemm ◽  
Marcos Mariño ◽  
Masoud Soroush

The matrix model of the Aharony-Bergman-Jafferis-Maldacena theory can be formulated in terms of an ideal Fermi gas with a non-trivial one-particle Hamiltonian. We show that, in this formalism, vacuum expectation values (vevs) of Wilson loops correspond to averages of operators in the statistical-mechanical problem. This makes it possible to calculate these vevs at all orders in 1/N, up to exponentially small corrections, and for arbitrary Chern-Simons coupling, by using the Wentzel- Kramer-Brillouin expansion.We present explicit results for the vevs of 1/6 and the 1/2 Bogomolnyi- Prasad-Sommerfield Wilson loops, at any winding number, in terms of Airy functions. Our expressions are shown to reproduce the low genus results obtained previously in the ’t Hooft expansion.


2010 ◽  
Vol 2010 (3) ◽  
Author(s):  
Antonio Bassetto ◽  
Luca Griguolo ◽  
Fabrizio Pucci ◽  
Domenico Seminara ◽  
Shiyamala Thambyahpillai ◽  
...  
Keyword(s):  

2010 ◽  
Vol 2010 (6) ◽  
Author(s):  
Paul Heslop ◽  
Valentin V. Khoze
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document