scholarly journals On the structure of non-planar strong coupling corrections to correlators of BPS Wilson loops and chiral primary operators

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Beccaria ◽  
A. A. Tseytlin

Abstract Starting with some known localization (matrix model) representations for correlators involving 1/2 BPS circular Wilson loop $$ \mathcal{W} $$ W in $$ \mathcal{N} $$ N = 4 SYM theory we work out their 1/N expansions in the limit of large ’t Hooft coupling λ. Motivated by a possibility of eventual matching to higher genus corrections in dual string theory we follow arXiv:2007.08512 and express the result in terms of the string coupling $$ {g}_{\mathrm{s}}\sim {g}_{\mathrm{YM}}^2\sim \lambda /N $$ g s ∼ g YM 2 ∼ λ / N and string tension $$ T\sim \sqrt{\lambda } $$ T ∼ λ . Keeping only the leading in 1/T term at each order in gs we observe that while the expansion of $$ \left\langle \mathcal{W}\right\rangle $$ W is a series in $$ {g}_{\mathrm{s}}^2/T $$ g s 2 / T , the correlator of the Wilson loop with chiral primary operators $$ {\mathcal{O}}_J $$ O J has expansion in powers of $$ {g}_{\mathrm{s}}^2/{T}^2 $$ g s 2 / T 2 . Like in the case of $$ \left\langle \mathcal{W}\right\rangle $$ W where these leading terms are known to resum into an exponential of a “one-handle” contribution $$ \sim {g}_{\mathrm{s}}^2/T $$ ∼ g s 2 / T , the leading strong coupling terms in $$ \left\langle {\mathcal{WO}}_J\right\rangle $$ WO J sum up to a simple square root function of $$ {g}_{\mathrm{s}}^2/{T}^2 $$ g s 2 / T 2 . Analogous expansions in powers of $$ {g}_{\mathrm{s}}^2/T $$ g s 2 / T are found for correlators of several coincident Wilson loops and they again have a simple resummed form. We also find similar expansions for correlators of coincident 1/2 BPS Wilson loops in the ABJM theory.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Simone Giombi ◽  
Arkady A. Tseytlin

Abstract We revisit the problem of matching the strong coupling expansion of the $$ \frac{1}{2} $$ 1 2 BPS circular Wilson loops in $$ \mathcal{N} $$ N = 4 SYM and ABJM gauge theories with their string theory duals in AdS5× S5 and AdS4× CP3, at the first subleading (one-loop) order of the expansion around the minimal surface. We observe that, including the overall factor 1/gs of the inverse string coupling constant, as appropriate for the open string partition function with disk topology, and a universal prefactor proportional to the square root of the string tension T, both the SYM and ABJM results precisely match the string theory prediction. We provide an explanation of the origin of the $$ \sqrt{T} $$ T prefactor based on special features of the combination of one-loop determinants appearing in the string partition function. The latter also implies a natural generalization Zχ ∼ ($$ \sqrt{T}/{g}_{\mathrm{s}} $$ T / g s )χ to higher genus contributions with the Euler number χ, which is consistent with the structure of the 1/N corrections found on the gauge theory side.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2018 ◽  
Vol 175 ◽  
pp. 12002
Author(s):  
Ryutaro Matsudo ◽  
Kei-Ichi Kondo ◽  
Akihiro Shibata

We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N − 3)A1/(N − 1) + A2 with A1 and A2(A1 < A2) being the minimal areas spanned respectively by the loops C1 and C2, which is neither sum-ofareas (A1 + A2) nor difference-of-areas (A2 − A1) law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.


2018 ◽  
Vol 175 ◽  
pp. 12010
Author(s):  
Akihiro Shibata ◽  
Seikou Kato ◽  
Kei-Ichi Kondo ◽  
Ryutaro Matsudo

We study the double-winding Wilson loops in the SU(N) Yang-Mills theory on the lattice. We discuss how the area law falloff of the double-winding Wilson loop average is modified by changing the enclosing contours C1 and C2 for various values of the number of color N. By using the strong coupling expansion, we evaluate the double-winding Wilson loop average in the lattice SU(N) Yang-Mills theory. Moreover, we compute the double-winding Wilson loop average by lattice Monte Carlo simulations for SU(2) and SU(3). We further discuss the results from the viewpoint of the Non-Abelian Stokes theorem in the higher representations.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Simone Giombi ◽  
Jiaqi Jiang ◽  
Shota Komatsu

Abstract The 1/2-BPS Wilson loop in $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory is an important and well-studied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in the fundamental representation. In this paper, we extend such analyses to Wilson loops in the large-rank symmetric and antisymmetric representations, which correspond to probe D3 and D5 branes with AdS2× S2 and AdS2× S4 worldvolume geometries, ending at the AdS5 boundary along a one-dimensional contour. We first compute the correlation functions of protected scalar insertions from supersymmetric localization, and obtain a representation in terms of multiple integrals that are similar to the eigenvalue integrals of the random matrix, but with important differences. Using ideas from the Fermi Gas formalism and the Clustering method, we evaluate their large N limit exactly as a function of the ’t Hooft coupling. The results are given by simple integrals of polynomials that resemble the Q-functions of the Quantum Spectral Curve, with integration measures depending on the number of insertions. Next, we study the correlation functions of fluctuations on the probe D3 and D5 branes in AdS. We compute a selection of three- and four-point functions from perturbation theory on the D-branes, and show that they agree with the results of localization when restricted to supersymmetric kinematics. We also explain how the difference of the internal geometries of the D3 and D5 branes manifests itself in the localization computation.


2010 ◽  
Vol 25 (30) ◽  
pp. 2555-2569 ◽  
Author(s):  
SHIJONG RYANG

For the asymptotic string solution in AdS3 which is represented by the AdS3 Poincaré coordinates and yields the planar multi-gluon scattering amplitude at strong coupling in arXiv:0904.0663, we express it by the AdS4 Poincaré coordinates and demonstrate that the hexagonal and octagonal Wilson loops surrounding the string surfaces take closed contours consisting of null vectors in R1,2 owing to the relations of Stokes matrices. For the tetragonal Wilson loop we construct a string solution characterized by two parameters by solving the auxiliary linear problems and demanding a reality condition, and analyze the asymptotic behavior of the solution in R1,2. The freedoms of two parameters are related with some conformal SO(2,4) transformations.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
M. Beccaria ◽  
G. V. Dunne ◽  
A. A. Tseytlin

Abstract As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $$ \mathcal{N} $$ N = 2 4d superconformal models we consider two special theories with gauge groups SU(N) and Sp(2N). They contain N-independent numbers of hypermultiplets in rank 2 antisymmetric and fundamental representations and are planar-equivalent to the corresponding $$ \mathcal{N} $$ N = 4 SYM theories. These $$ \mathcal{N} $$ N = 2 theories can be realised on a system of N D3-branes with a finite number of D7-branes and O7-plane; the dual string theories should be particular orientifolds of AdS5 × S5 superstring. Starting with the localization matrix model representation for the $$ \mathcal{N} $$ N = 2 partition function on S4 we find exact differential relations between the 1/N terms in the corresponding free energy F and the $$ \frac{1}{2} $$ 1 2 -BPS Wilson loop expectation value $$ \left\langle \mathcal{W}\right\rangle $$ W and also compute their large ’t Hooft coupling (λ » 1) expansions. The structure of these expansions is different from the previously studied models without fundamental hypermultiplets. In the more tractable Sp(2N) case we find an exact resummed expression for the leading strong coupling terms at each order in the 1/N expansion. We also determine the exponentially suppressed at large λ contributions to the non-planar corrections to F and $$ \left\langle \mathcal{W}\right\rangle $$ W and comment on their resurgence properties. We discuss dual string theory interpretation of these strong coupling expansions.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Hao Ouyang

Abstract We study circular BPS Wilson loops in the $$ \mathcal{N} $$ N = 2 superconformal n-node quiver theories at large N and strong ’t Hooft coupling by using localization. We compute the expectation values of Wilson loops in the limit when the ’t Hooft couplings are hierarchically different and when they are nearly equal. Based on these results, we make a conjecture for arbitrary strong couplings.


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Xinyi Chen-Lin

We study the circular Wilson loop in the symmetric representation of U(N)U(N) in mathcal{N} = 4𝒩=4 super-Yang-Mills (SYM). In the large NN limit, we computed the exponentially-suppressed corrections for strong coupling, which suggests non-perturbative physics in the dual holographic theory. We also computed the next-to-leading order term in 1/N1/N, and the result matches with the exact result from the kk-fundamental representation.


1987 ◽  
Vol 02 (08) ◽  
pp. 601-608 ◽  
Author(s):  
T. FUKAI ◽  
M. V. ATRE

The Grassmannian σ model with a topological term is studied on a lattice. The θ dependence of the partition function and the Wilson loop are evaluated in the strong coupling limit. The latter is shown to be independent of the area at θ = π, as in the CPN−1 model.


Sign in / Sign up

Export Citation Format

Share Document