scholarly journals A gauge invariant order parameter for monopole condensation in QCD vacuum

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Adriano Di Giacomo

Abstract In this paper we improve the existing order parameter for monopole condensation in gauge theory vacuum, making it gauge-invariant from scratch and free of the spurious infrared problems which plagued the old one. Computing the new parameter on the lattice will unambiguously detect weather dual superconductivity is the mechanism for color confinement.As a byproduct we relate confinement to the existence of a finite correlation length in the gauge-invariant correlator of chromo-electric field strengths.

1969 ◽  
Vol 24 (5) ◽  
pp. 711-715
Author(s):  
Pitter Gräff

Abstract The admissible closure conditions can be completely determined in the limit of vanishing cor­ relation length. In this case the Lundgren hierarchy can be solved, since this irregular state persists in the course of time. The electric field on the other hand loses its statistical character. - The results can be extended to examples of homogeneous turbulence with a finite correlation length.


1995 ◽  
Vol 10 (24) ◽  
pp. 1755-1760 ◽  
Author(s):  
N.O. AGASYAN ◽  
YU.A. SIMONOV

Instantons in the stochastic confining background are influenced by both the oneloop renormalization in the background and a direct interaction with the background. Stochasticity (finite correlation length) of the background drastically changes the ir properties and yields a convergent instanton density even neglecting interinstanton interaction, while the packing parameter (ρ/R)4 decreases due to the background.


Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1997 ◽  
Vol 72-74 ◽  
pp. 112-113 ◽  
Author(s):  
Zhidong Lou ◽  
Zheng Xu ◽  
Feng Teng ◽  
Xurong Xu

2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


2011 ◽  
Vol 26 (26) ◽  
pp. 1985-1994 ◽  
Author(s):  
ANTONIO ACCIOLY ◽  
PATRICIO GAETE ◽  
JOSÉ HELAYËL-NETO ◽  
ESLLEY SCATENA ◽  
RODRIGO TURCATI

We consider the Lee–Wick (LW) electrodynamics, i.e. the U(1) gauge theory where a (gauge-invariant) dimension-6 operator containing higher derivatives is added to the free Lagrangian of the U(1) sector. A quantum bound on the LW heavy particle mass is then estimated by computing the anomalous electron–magnetic moment in the context of the aforementioned model. This limit is not only within the allowed range estimated by LW, it is also of the same order as that considered in early investigations on the possible effects of the LW heavy particle in e-e+ elastic scattering. A comparative study between the LW and the Coulomb potentials is also done.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012179
Author(s):  
R F Babayeva

Abstract An induced impurity photoconductivity by the electric field, thermally stimulated conductivity and spontaneous pulsations of the dark current were found in the undoped (with a dark resistivity P77≈3•104÷108 Ω-cm at T≈77 K) and erbium doped (NEr=10–5÷10–1 at.%) p-GaSe crystals in the temperature range of T≤240÷250 K at electric field strengths (E) creating a noticeable injection. It was found that the value of the observed impurity photoconductivity (M) monotonically increase at low illumination in undoped crystals with increasing P77 and its spectrum smoothly expands towards longer waves. The value of ∆ii and the width of its spectrum change non-monotonically with increasing NEr in doped crystal and it gets its maximum value at NEr ≈5•10-4 at.%. The intensity of spontaneous pulsations increases with increasing E at the higher electric field strengths. However, the impurity photoconductivity and the peak of thermally stimulated conductivity gradually disappeared. The amplitude and frequency of the observed spontaneous pulsations of the dark current is increased with increasing in the injection ability of the contacts. Moreover, the pulsations of the dark current gradually disappeared with increasing T. It was shown that all these three phenomena are directly caused by the recharge of sticking levels with a depth Er ≈+0.42 eV and a density Nt≈ 1015 cm-3 by injected holes. However, in high-resistance undoped and doped Er ≤10-2 at.% crystals, it is also necessary to consider the presence of random macroscopic defects in the samples to explain their features. A qualitative explanation is proposed based on the obtained results.


Sign in / Sign up

Export Citation Format

Share Document