scholarly journals Holographic entanglement entropy for excited states in two dimensional CFT

2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
Amin Faraji Astaneh ◽  
Amir Esmaeil Mosaffa
2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Alexandre Belin ◽  
Nabil Iqbal ◽  
Jorrit Kruthoff

We study quantum corrections to holographic entanglement entropy in AdS_33/CFT_22; these are given by the bulk entanglement entropy across the Ryu-Takayanagi surface for all fields in the effective gravitational theory. We consider bulk U(1)U(1) gauge fields and gravitons, whose dynamics in AdS_33 are governed by Chern-Simons terms and are therefore topological. In this case the relevant Hilbert space is that of the edge excitations. A novelty of the holographic construction is that such modes live not only on the bulk entanglement cut but also on the AdS boundary. We describe the interplay of these excitations and provide an explicit map to the appropriate extended Hilbert space. We compute the bulk entanglement entropy for the CFT vacuum state and find that the effect of the bulk entanglement entropy is to renormalize the relation between the effective holographic central charge and Newton’s constant. We also consider excited states obtained by acting with the U(1)U(1) current on the vacuum, and compute the difference in bulk entanglement entropy between these states and the vacuum. We compute this UV-finite difference both in the bulk and in the CFT finding a perfect agreement.


2018 ◽  
Vol 33 (17) ◽  
pp. 1850100 ◽  
Author(s):  
Kazuharu Bamba ◽  
Davood Momeni ◽  
Mudhahir Al Ajmi

In this paper, we will compute the holographic complexity (dual to a volume in AdS), holographic fidelity susceptibility and the holographic entanglement entropy (dual to an area in AdS) in a two-dimensional version of AdS which is dual to open strings. We will explicitly demonstrate that these quantities are well defined, and then argue that a relation for fidelity susceptibility and time should hold in general due to the AdS2 version of the classical Kepler’s principle. We will demonstrate that it holds for AdS2 solution as well as conformal copies metrics in bulk theory of a prescribed dual conformal invariant quantum mechanics which have been obtained in open string theory. We will also show that hierarchical UV/IR mixing exists in boundary string theory through the holographic bulk picture.


2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Alexandre Belin ◽  
Nabil Iqbal ◽  
Sagar F. Lokhande

We compute the bulk entanglement entropy across the Ryu-Takayanagi surface for a one-particle state in a scalar field theory in AdS_33. We work directly within the bulk Hilbert space and include the spatial spread of the scalar wavefunction. We give closed form expressions in the limit of small interval sizes and compare the result to a CFT computation of entanglement entropy in an excited primary state at large cc. Including the contribution from the backreacted minimal area, we find agreement between the CFT result and the FLM and JLMS formulas for quantum corrections to holographic entanglement entropy. This provides a non-trivial check in a state where the answer is not dictated by symmetry. Along the way, we provide closed-form expressions for the scalar field Bogoliubov coefficients that relate the global and Rindler slicings of AdS_33.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jiaju Zhang ◽  
M.A. Rajabpour

Abstract We investigate the Rényi entropy of the excited states produced by the current and its derivatives in the two-dimensional free massless non-compact bosonic theory, which is a two-dimensional conformal field theory. We also study the subsystem Schatten distance between these states. The two-dimensional free massless non-compact bosonic theory is the continuum limit of the finite periodic gapless harmonic chains with the local interactions. We identify the excited states produced by current and its derivatives in the massless bosonic theory as the single-particle excited states in the gapless harmonic chain. We calculate analytically the second Rényi entropy and the second Schatten distance in the massless bosonic theory. We then use the wave functions of the excited states and calculate the second Rényi entropy and the second Schatten distance in the gapless limit of the harmonic chain, which match perfectly with the analytical results in the massless bosonic theory. We verify that in the large momentum limit the single-particle state Rényi entropy takes a universal form. We also show that in the limit of large momenta and large momentum difference the subsystem Schatten distance takes a universal form but it is replaced by a new corrected form when the momentum difference is small. Finally we also comment on the mutual Rényi entropy of two disjoint intervals in the excited states of the two-dimensional free non-compact bosonic theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Elena Cáceres ◽  
Rodrigo Castillo Vásquez ◽  
Alejandro Vilar López

Abstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Donald Marolf ◽  
Shannon Wang ◽  
Zhencheng Wang

Abstract Recent results suggest that new corrections to holographic entanglement entropy should arise near phase transitions of the associated Ryu-Takayanagi (RT) surface. We study such corrections by decomposing the bulk state into fixed-area states and conjecturing that a certain ‘diagonal approximation’ will hold. In terms of the bulk Newton constant G, this yields a correction of order O(G−1/2) near such transitions, which is in particular larger than generic corrections from the entanglement of bulk quantum fields. However, the correction becomes exponentially suppressed away from the transition. The net effect is to make the entanglement a smooth function of all parameters, turning the RT ‘phase transition’ into a crossover already at this level of analysis.We illustrate this effect with explicit calculations (again assuming our diagonal approximation) for boundary regions given by a pair of disconnected intervals on the boundary of the AdS3 vacuum and for a single interval on the boundary of the BTZ black hole. In a natural large-volume limit where our diagonal approximation clearly holds, this second example verifies that our results agree with general predictions made by Murthy and Srednicki in the context of chaotic many-body systems. As a further check on our conjectured diagonal approximation, we show that it also reproduces the O(G−1/2) correction found Penington et al. for an analogous quantum RT transition. Our explicit computations also illustrate the cutoff-dependence of fluctuations in RT-areas.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


Sign in / Sign up

Export Citation Format

Share Document