scholarly journals Entanglement entropy and the first law at third order for boosted black branes

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sabyasachi Maulik ◽  
Harvendra Singh

Abstract Gauge/gravity duality relates an AdS black hole with uniform boost with a boosted strongly-coupled CFT at finite temperature. We study the perturbative change in holographic entanglement entropy for strip sub-region in such gravity solutions up to third order and try to formulate a first law of entanglement thermodynamics including higher order corrections. The first law receives important contribution from an entanglement chemical potential in presence of boost. We find that suitable modifications to the entanglement temperature and entanglement chemical potential are required to account for higher order corrections. The results can be extended to non-conformal cases and AdS plane wave background.

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Chanyong Park

We study a generalD-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


2018 ◽  
Vol 2018 ◽  
pp. 1-27
Author(s):  
Sagar F. Lokhande

We use a simple holographic toy model to study global quantum quenches in strongly coupled, hyperscaling-violating-Lifshitz quantum field theories using entanglement entropy as a probe. Generalizing our conformal field theory results, we show that the holographic entanglement entropy of small subsystems can be written as a simple linear response relation. We use this relation to derive a time-dependent first law of entanglement entropy. In general, this law has a time-dependent term resembling relative entropy which we propose as a good order parameter to characterize out-of-equilibrium states in the post-quench evolution. We use these tools to study a broad class of quantum quenches in detail: instantaneous, power law, and periodic.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2161-2164 ◽  
Author(s):  
JUN NISHIMURA

We perform a direct test of the gauge/gravity duality by studying one-dimensional U (N) gauge theory with 16 supercharges at finite temperature using Monte Carlo simulation. In the 't Hooft large-N limit and in the strong coupling limit, the model is expected to have a dual gravity description in terms of the near-extremal black 0-brane solution in ten-dimensional type IIA supergravity. Our results provide the first example, in which the microscopic origin of the black hole thermodynamics is accounted for by solving explicitly the strongly coupled dynamics of the open strings attached to the D-branes.


2015 ◽  
Vol 30 (16) ◽  
pp. 1530039 ◽  
Author(s):  
O. Obregón

A nonextensive statistical mechanics entropy that depends only on the probability distribution is proposed in the framework of superstatistics. It is based on a Γ(χ2) distribution that depends on β and also on pl. The corresponding modified von Neumann entropy is constructed; it is shown that it can also be obtained from a generalized Replica trick. We further demonstrate a generalized H-theorem. Considering the entropy as a function of the temperature and volume, it is possible to generalize the equation of state of an ideal gas. Moreover, following the entropic force formulation a generalized Newton's law is obtained, and following the proposal that the Einstein equations can be deduced from the Clausius law, we discuss on the structure that a generalized Einstein's theory would have. Lastly, we address the question whether the generalized entanglement entropy can play a role in the gauge/gravity duality. We pay attention to 2d CFT and their gravity duals. The correction terms to the von Neumann entropy result more relevant than the usual UV ones and also than those due to the area dependent AdS3 entropy which result comparable to the UV ones. Then the correction terms due to the new entropy would modify the Ryu–Takayanagi identification between the CFT entanglement entropy and the AdS entropy in a different manner than the UV ones or than the corrections to the AdS3 area dependent entropy.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Koushik Ganesan ◽  
Andrew Lucas

Abstract We initiate a study of finite temperature transport in gapless and strongly coupled quantum theories with charge and dipole conservation using gauge-gravity duality. In a model with non-dynamical gravity, the bulk fields of our model include a suitable mixed-rank tensor which encodes the boundary multipole symmetry. We describe how such a theory can arise at low energies in a theory with a covariant bulk action. Studying response functions at zero density, we find that charge relaxes via a fourth-order subdiffusion equation, consistent with a recently-developed field-theoretic framework.


2010 ◽  
Vol 25 (34) ◽  
pp. 2859-2872 ◽  
Author(s):  
SPENTA R. WADIA

We discuss the AdS/CFT correspondence in which spacetime emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular, we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semiclassical gravity in one higher dimension. We also discuss implications of the gauge fluid/gravity correspondence for the information paradox of black hole physics.


2015 ◽  
Vol 24 (10) ◽  
pp. 1530011 ◽  
Author(s):  
Paul M. Chesler ◽  
Wilke van der Schee

Gauge/gravity duality has provided unprecedented opportunities to study dynamics in certain strongly coupled gauge theories. This review aims to highlight several applications to heavy ion collisions including far-from-equilibrium dynamics, hydrodynamics and jet energy loss at strong coupling.


Sign in / Sign up

Export Citation Format

Share Document