Minimal scoto-seesaw mechanism with spontaneous CP violation
Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $$ {\mathcal{Z}}_8 $$ Z 8 discrete symmetry, broken to a residual $$ {\mathcal{Z}}_2 $$ Z 2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $$ {\mathcal{Z}}_8 $$ Z 8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.