scholarly journals Hawking radiation from universal horizons

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Mario Herrero-Valea ◽  
Stefano Liberati ◽  
Raquel Santos-Garcia

Abstract The persistence of a suitable notion of black hole thermodynamics in Lorentz breaking theories of gravity is not only a non-trivial consistency test for such theories, it is also an interesting investigation per se, as it might help us identifying the crucial features at the root of these surprising laws governing such purely gravitational objects. In past investigations, controversial findings were presented in this sense. With the aim of settling this issue, we present here two complementary derivations of Hawking radiation in geometries endowed with universal horizons: a novel feature of back holes in Lorentz breaking theories of gravity which reproduces several properties normally characterizing Killing horizons. We find that both the derivations agree on the fact that the Hawking temperature associated to these geometries is set by the generalized universal horizon peeling surface gravity, as required for consistency with extant derivations of the first law of thermodynamics for these black holes. We shall also comment on the compatibility of our results with previous alternative derivations and on their significance for the survival of the generalized second law of black hole thermodynamics in Lorentz breaking theories of gravity.

2019 ◽  
Vol 35 (04) ◽  
pp. 1950360 ◽  
Author(s):  
A. S. Sefiedgar ◽  
M. Mirzazadeh

Thermodynamics of the evolving Lorentzian wormhole at the apparent horizon is investigated in [Formula: see text] gravity. Redefining the energy density and the pressure, the continuity equation is satisfied and the field equations in [Formula: see text] gravity reduce to the ones in general relativity. However, the energy–momentum tensor includes all the corrections from [Formula: see text] gravity. Therefore, one can apply the standard entropy-area relation within [Formula: see text] gravity. It is shown that there may be an equivalency between the field equations and the first law of thermodynamics. It seems that an equilibrium thermodynamics may be held on the apparent horizon. The validity of the generalized second law of thermodynamics (GSL) is also investigated in the wormholes.


2008 ◽  
Vol 665 (4) ◽  
pp. 260-263 ◽  
Author(s):  
Baocheng Zhang ◽  
Qing-yu Cai ◽  
Ming-sheng Zhan

2012 ◽  
Vol 21 (07) ◽  
pp. 1250065 ◽  
Author(s):  
MUBASHER JAMIL ◽  
D. MOMENI ◽  
KAZUHARU BAMBA ◽  
RATBAY MYRZAKULOV

Motivated by some earlier works [G. Izquierdo and D. Pavon, Phys. Lett. B 639 (2006) 1; H. M. Sadjadi, Phys. Lett. B 645 (2007) 108.] dealing with the study of generalized second law (GSL) of thermodynamics for a system comprising of a Schwarzschild black hole accreting a test nonself-gravitating fluid namely phantom energy in FRW universe, we extend them when the entropy of horizons of black hole and the cosmological undergo quantum corrections. Two types of such corrections are relevant here including logarithmic and power-law, while both are motivated from different theoretical backgrounds. We obtain general mathematical conditions for the validity of GSL in each case. Further we find that GSL restricts the mass of black hole for accretion of phantom energy. As such we obtain upper bounds on the mass of black hole above which the black hole cannot accrete the phantom fluid, otherwise the GSL is violated.


2019 ◽  
Vol 59 (1) ◽  
Author(s):  
Gu-Qiang Li ◽  
Yan-Yi Ou ◽  
Ze-Tao Lin

The Hawking radiation of charged particles from black holes in the Hořava–Lifshitz (HL) gravity is investigated by using the Parikh–Wilczek (PW) method, and the emission rate is calculated. The emission spectrum is not purely thermal and is consistent with an underlying unitary theory. Some other characteristics exist for a HL gravity black hole. Assuming the conventional tunnelling rate associated with the change of entropy, the entropy of the HL gravity black hole is obtained. The entropy is not proportional to the horizon area because a logarithmic term exists. However, it complies with the first law of thermodynamics and is in accord with earlier results.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 167
Author(s):  
Fei-Quan Tu ◽  
Yi-Xin Chen ◽  
Qi-Hong Huang

It has previously been shown that it is more common to describe the evolution of the universe based on the emergence of space and the energy balance relation. Here we investigate the thermodynamic properties of the universe described by such a model. We show that the first law of thermodynamics and the generalized second law of thermodynamics (GSLT) are both satisfied and the weak energy condition are also fulfilled for two typical examples. Finally, we examine the physical consistency for the present model. The results show that there exists a good thermodynamic description for such a universe.


Sign in / Sign up

Export Citation Format

Share Document