scholarly journals Tunnelling radiation of charged particles from a Hořava–Lifshitz gravity black hole

2019 ◽  
Vol 59 (1) ◽  
Author(s):  
Gu-Qiang Li ◽  
Yan-Yi Ou ◽  
Ze-Tao Lin

The Hawking radiation of charged particles from black holes in the Hořava–Lifshitz (HL) gravity is investigated by using the Parikh–Wilczek (PW) method, and the emission rate is calculated. The emission spectrum is not purely thermal and is consistent with an underlying unitary theory. Some other characteristics exist for a HL gravity black hole. Assuming the conventional tunnelling rate associated with the change of entropy, the entropy of the HL gravity black hole is obtained. The entropy is not proportional to the horizon area because a logarithmic term exists. However, it complies with the first law of thermodynamics and is in accord with earlier results.

2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2012 ◽  
Vol 538-541 ◽  
pp. 2169-2174
Author(s):  
Qing Quan Jiang

In this paper, when considering the conservation of energy, electric charge and angular momentum, we develop the Parikh-Wilczek’s quantum tunneling method to study the Hawking radiation of charged particles via tunneling from the event horizon of Kim black hole. The result shows the exact radiation spectrum deviates from the precisely thermal one, but satisfies an underlying unitary theory, which provides a possible solution to the information loss during the black hole evaporation.


2010 ◽  
Vol 25 (30) ◽  
pp. 5543-5555 ◽  
Author(s):  
S. HAMID MEHDIPOUR

We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner–Nordström black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.


2012 ◽  
Vol 170-173 ◽  
pp. 2940-2943
Author(s):  
Qing Quan Jiang

In Anti-de Sitter space-time, we develop the Parikh-Wilczek’s semi-classical quantum tunneling method to investigate the Hawking radiation of the charged massive particle via tunneling from a plane symmetry black hole. The result shows that, when taking self-gravitation interaction into account, the tunneling rate of the charged massive particle is related to the change of Bekenstein-Hawking entropy, and that the exact emission spectrum is not strictly pure thermal, but is consistent with the underlying unitary theory.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750165 ◽  
Author(s):  
Biplab Paik

Classical singular black holes are known to obey the cosmic censorship conjecture, and therefore are indestructible until they get completely evaporated by the Hawking radiation phenomenon. However, a nonsingular quantum black hole may not be necessarily indestructible. To proceed in this test, we deduce the first law of thermodynamics for the renormalization technique based, quantum improved, nonsingular Kerr class black hole, and then the test is done by Wald’s method. It emerges that while the quantum improvement leads to an escape for black hole from complete evaporation, it also makes a spinning black hole well destructible against overspinning. Even though, in general, spinning quantum black holes appear quite destructible, in the regime of exceedingly low rate of allowed spin, slower the spin becomes, weaker happens to be the probability of black hole getting destroyed. In particular, the minimally energized black hole relic, which is of a Schwarzschild class, emerges absolutely indestructible. It has further been argued that the practical stable existence of “G-lumps” is improbable. In context of our formal work, we find a great scope for figuring out the quantum corrected differential version of “entropy-area law” for Kerr class black hole.


2010 ◽  
Vol 25 (04) ◽  
pp. 295-308 ◽  
Author(s):  
YA-PENG HU ◽  
JING-YI ZHANG ◽  
ZHENG ZHAO

Since Parikh and Wilczek's tunneling method was proposed, there have been many generalizations, such as its application to massive charged particles' tunneling and other spacetimes. Moreover, an invariant tunneling method was also recently proposed by Angheben et al. that it was independent of coordinates. However, there are some subtleties in the calculation of Hawking radiation, and particularly the so-called factor of 2 problem during the calculation of the Hawking temperature. The most popular opinion on this problem is that it is just a problem of the choice of coordinates. However, following other treatments we show that we can also consider this problem to be that we do not consider the contribution from P(absorption). Moreover, we also clarify some subtleties in the balance method and give some comparisons with other treatments. In addition, as Parikh and Wilczek's original works have showed that if one takes the tunneling particles' back-reaction into account, the Hawking radiation would be modified, and this modification is underlying consistent with the unitary theory, we further find that this modification is also underlying correlated with the laws of black hole thermodynamics. Furthermore, we show that this tunneling method may be valid just when the tunneling process is reversible.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050236
Author(s):  
Shiwei Zhou ◽  
Kui Xiao

Propagation of sound waves in a flowing fluid can be viewed as a minimally coupled massless scalar field propagating in curved spacetime. The analogue Hawking radiation from a spherically symmetric acoustic black hole and a (2 + 1)-dimensional rotating acoustic black hole are investigated respectively in Damour–Ruffini’s method. The emission rate and Hawking temperature are obtained, which are related to acoustic black holes parameter.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350037 ◽  
Author(s):  
R. TORRES ◽  
F. FAYOS ◽  
O. LORENTE-ESPÍN

We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.


2007 ◽  
Vol 16 (05) ◽  
pp. 847-855 ◽  
Author(s):  
YAPENG HU ◽  
JINGYI ZHANG ◽  
ZHENG ZHAO

Originally, Parikh and Wilczek's work is only suitable for the massless particles' tunneling. But their work has been further extended to the cases of massive uncharged and charged particles' tunneling recently. In this paper, as a particular black hole solution, we apply this extended method to reconsider the tunneling effect of the Horowitz–Strominger Dilaton black hole. We investigate the behavior of both massive uncharged and charged particles, and respectively calculate the emission rate at the event horizon. Our result shows that their emission rates are also consistent with the unitary theory. Moreover, comparing with the case of massless particles' tunneling, we find that this conclusion is independent of the kind of particles. And it is probably caused by the underlying relationship between this method and the laws of black hole thermodynamics.


Sign in / Sign up

Export Citation Format

Share Document