scholarly journals One-loop integrand from generalised scattering equations

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Md. Abhishek ◽  
Subramanya Hegde ◽  
Arnab Priya Saha

Abstract Generalised bi-adjoint scalar amplitudes, obtained from integrations over moduli space of punctured ℂℙk − 1, are novel extensions of the CHY formalism. These amplitudes have realisations in terms of Grassmannian cluster algebras. Recently connections between one-loop integrands for bi-adjoint cubic scalar theory and $$ {\mathcal{D}}_n $$ D n cluster polytope have been established. In this paper using the Gr (3, 6) cluster algebra, we relate the singularities of (3, 6) amplitude to four-point one-loop integrand in the bi-adjoint cubic scalar theory through the $$ {\mathcal{D}}_4 $$ D 4 cluster polytope. We also study factorisation properties of the (3, 6) amplitude at various boundaries in the worldsheet.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $$ {D}_2\simeq {A}_1^2 $$ D 2 ≃ A 1 2 , we show that penta-box ladder has an alphabet of D3 ≃ A3 and provide strong evidence that the alphabet of seven-point double-penta ladders can be identified with a D4 cluster algebra. We relate the symbol letters to the u variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop d log representation, which allows us to predict higher-loop alphabet recursively; by applying it to certain eight-point and nine-point double-penta ladders, we also find D5 and D6 cluster functions respectively.


10.37236/6464 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Kyungyong Lee ◽  
Li Li ◽  
Ba Nguyen

Lots of research focuses on the combinatorics behind various bases of cluster algebras. This paper studies the natural basis of a type $A$ cluster algebra, which consists of all cluster monomials. We introduce a new kind of combinatorial formula for the cluster monomials in terms of the so-called globally compatible collections. We give bijective proofs of these formulas by comparing with the well-known combinatorial models of the $T$-paths and of the perfect matchings in a snake diagram. For cluster variables of a type $A$ cluster algebra, we give a bijection that relates our new formula with the theta functions constructed by Gross, Hacking, Keel and Kontsevich.


2020 ◽  
Vol 156 (5) ◽  
pp. 946-958 ◽  
Author(s):  
Peigen Cao ◽  
Fang Li

We prove that any skew-symmetrizable cluster algebra is unistructural, which is a conjecture by Assem, Schiffler and Shramchenko. As a corollary, we obtain that a cluster automorphism of a cluster algebra ${\mathcal{A}}({\mathcal{S}})$ is just an automorphism of the ambient field ${\mathcal{F}}$ which restricts to a permutation of the cluster variables of ${\mathcal{A}}({\mathcal{S}})$.


2014 ◽  
Vol 56 (3) ◽  
pp. 705-720 ◽  
Author(s):  
IBRAHIM ASSEM ◽  
VASILISA SHRAMCHENKO ◽  
RALF SCHIFFLER

AbstractIn this paper, we introduce a notion of unistructural cluster algebras, for which the set of cluster variables uniquely determines the clusters, as well as the notion of weak unistructural cluster algebras, for which the set of cluster variables determines the clusters, provided that the type of the cluster algebra is fixed. We prove that, for cluster algebras of the Dynkin type, the two notions of unistructural and weakly unistructural coincide, and that cluster algebras of rank 2 are always unistructural. We then prove that a cluster algebra $\mathcal A$ is weakly unistructural if and only if any automorphism of the ambient field, which restricts to a permutation of cluster variables of $\mathcal A$, is a cluster automorphism. We also investigate the Fomin-Zelevinsky conjecture that two cluster variables are compatible if and only if one does not appear in the denominator of the Laurent expansions of the other.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) G+(4, n)/T for the n-particle massless kinematics. For one-, two-, three-mass-easy hexagon kinematics with n = 7, 8, 9, we find finite cluster algebras D4, D5 and D6 respectively, in accordance with previous result on alphabets of these integrals. As the main example, we consider hexagon kinematics with two massive corners on opposite sides and find a truncated affine D4 cluster algebra whose polytopal realization is a co-dimension 4 boundary of that of G+(4, 8)/T with 39 facets; the normal vectors for 38 of them correspond to g-vectors and the remaining one gives a limit ray, which yields an alphabet of 38 rational letters and 5 algebraic ones with the unique four-mass-box square root. We construct the space of integrable symbols with this alphabet and physical first-entry conditions, whose dimension can be reduced using conditions from a truncated version of cluster adjacency. Already at weight 4, by imposing last-entry conditions inspired by the n = 8 double-pentagon integral, we are able to uniquely determine an integrable symbol that gives the algebraic part of the most generic double-pentagon integral. Finally, we locate in the space the n = 8 double-pentagon ladder integrals up to four loops using differential equations derived from Wilson-loop d log forms, and we find a remarkable pattern about the appearance of algebraic letters.


2012 ◽  
Vol 149 (2) ◽  
pp. 217-263 ◽  
Author(s):  
Gregg Musiker ◽  
Ralf Schiffler ◽  
Lauren Williams

AbstractWe construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a full-rank exchange matrix, such asprincipal coefficients.


2013 ◽  
Vol 23 (04) ◽  
pp. 745-762
Author(s):  
HÉLÈNE BARCELO ◽  
CHRISTOPHER SEVERS ◽  
JACOB A. WHITE

The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete homotopy theory. We study the abelianization of the discrete fundamental group, and show that it is free abelian of rank [Formula: see text]. We also find a combinatorial description for a basis of this rank. We also introduce the exchange module of the type An cluster algebra, used to model the relations in the cluster algebra. We use the discrete fundamental group to the study of exchange module, and show that it is also free abelian of rank [Formula: see text].


2012 ◽  
Vol 11 (04) ◽  
pp. 1250069 ◽  
Author(s):  
G. DUPONT

Let Q be an acyclic quiver and let [Formula: see text] be the corresponding cluster algebra. Let H be the path algebra of Q over an algebraically closed field and let M be an indecomposable regular H-module. We prove the positivity of the cluster characters associated to M expressed in the initial seed of [Formula: see text] when either H is tame and M is any regular H-module, or H is wild and M is a regular Schur module which is not quasi-simple.


Sign in / Sign up

Export Citation Format

Share Document