scholarly journals The bosonic string on string-size tori from double field theory

2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Yago Cagnacci ◽  
Mariana Graña ◽  
Sergio Iguri ◽  
Carmen Nuñez
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
W. Baron ◽  
D. Marques

Abstract We recently introduced a T-duality covariant mechanism to compute all-order higher-derivative interactions in the heterotic string. Here we extend the formalism to account for a two-parameter family of corrections that also include the bosonic string and HSZ theory. We use our result to compute the full second order Double Field Theory (DFT) for generic values of the parameters, including the generalized Green-Schwarz transformation and its invariant action.


2021 ◽  
Vol 62 (5) ◽  
pp. 052302
Author(s):  
Clay James Grewcoe ◽  
Larisa Jonke

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


2000 ◽  
Vol 579 (1-2) ◽  
pp. 379-410 ◽  
Author(s):  
Alberto Frizzo ◽  
Lorenzo Magnea ◽  
Rodolfo Russo

2016 ◽  
Vol 125 ◽  
pp. 05017 ◽  
Author(s):  
Edvard Musaev

1991 ◽  
Vol 06 (22) ◽  
pp. 3997-4008 ◽  
Author(s):  
W. SIEGEL

In the BRST approach to first quantization, bosonic ghosts can cause ambiguities in the cohomology (and thus in second quantization). We show how nonminimal terms give a general solution to this problem, avoiding the need for “picture-changing operators.” As examples, we consider spinning particles, superparticles, covariantized light cone bosonic string field theory, and NSR superstring field theory.


1995 ◽  
Vol 10 (17) ◽  
pp. 1187-1193 ◽  
Author(s):  
E. ELIZALDE ◽  
S.D. ODINTSOV

We calculate the quantum corrections to the entropy of a very large black hole, coming from the theory of a D-dimensional, noncritical bosonic string. We show that for D>2, as a result of modular invariance the entropy is uv finite though it diverges in the ir (while for D=2 the entropy contains both uv and ir divergences). The issue of modular invariance in field theory, in connection with black hole entropy, is also investigated.


2018 ◽  
Vol 2018 (7) ◽  
Author(s):  
Tetsuji Kimura ◽  
Shin Sasaki ◽  
Kenta Shiozawa

Sign in / Sign up

Export Citation Format

Share Document