scholarly journals Flavorful leptoquarks at the LHC and beyond: spin 1

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Gudrun Hiller ◽  
Dennis Loose ◽  
Ivan Nišandžić

Abstract Evidence for electron-muon universality violation that has been revealed in b → sℓℓ transitions in the observables $$ {R}_{KK^{\ast }} $$ R KK ∗ by the LHCb Collaboration can be explained with spin-1 leptoquarks in SU(2)L singlet V1 or triplet V3 representations in the $$ \mathcal{O} $$ O (1 − 10) TeV range. We explore the sensitivity of the high luminosity LHC (HL-LHC) and future proton-proton colliders to V1 and V3 in the parameter space connected to $$ {R}_{KK^{\ast }} $$ R KK ∗ -data. We consider pair production and single production in association with muons in different flavor benchmarks. Reinterpreting a recent ATLAS search for scalar leptoquarks decaying to bμ and jμ, we extract improved limits for the leptoquark masses: for gauge boson-type leptoquarks (κ = 1) we obtain $$ {M}_{V_1} $$ M V 1 > 1.9 TeV, $$ {M}_{V_1} $$ M V 1 > 1.9 TeV, and $$ {M}_{V_1} $$ M V 1 > 1.7 TeV for leptoquarks decaying predominantly according to hierarchical, flipped and democratic quark flavor structure, respectively. Future sensitivity projections based on extrapolations of existing ATLAS and CMS searches are worked out. We find that for κ = 1 the mass reach for pair (single) production of V1 can be up to 3 TeV (2.1 TeV) at the HL-LHC and up to 15 TeV (19.9 TeV) at the FCC-hh with $$ \sqrt{s} $$ s = 100 TeV and 20 ab−1. The mass limits and reach for the triplet V3 are similar or higher, depending on flavor. While there is the exciting possibility that leptoquarks addressing the $$ {R}_{KK^{\ast }} $$ R KK ∗ -anomalies are observed at the LHC, to fully cover the parameter space pp-collisions beyond the LHC-energies are needed.

Author(s):  
B. C. Allanach ◽  
Tyler Corbett ◽  
Maeve Madigan

Abstract We estimate the future sensitivity of the high luminosity (HL-) and high energy (HE-) modes of the Large Hadron Collider (LHC) and of a 100 TeV future circular collider (FCC-hh) to leptoquark (LQ) pair production in the muon-plus-jet decay mode of each LQ. Such LQs are motivated by the fact that they provide an explanation for the neutral current B-anomalies. For each future collider, Standard Model (SM) backgrounds and detector effects are simulated. From these, sensitivities of each collider are found. Our measures of sensitivity are based upon a Run II ATLAS search, which we also use for validation. We illustrate with a narrow scalar (‘$$S_3$$S3’) LQ and find that, in our channel, the HL-LHC has exclusion sensitivity to LQ masses up to 1.8 TeV, the HE-LHC up to 4.8 TeV and the FCC-hh up to 13.5 TeV.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in B meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-$$p_{\mathrm {T}}$$ p T large-radius jet. The full Run 2 dataset is exploited, consisting of $$139~\hbox {fb}^{-1}$$ 139 fb - 1 of data collected from proton–proton collisions at $$\sqrt{s}=13~\mathrm {TeV}$$ s = 13 TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at $$1480~\mathrm {GeV}$$ 1480 GeV and $$1470~\mathrm {GeV}$$ 1470 GeV for the electron and muon channel, respectively.


2014 ◽  
Vol 739 ◽  
pp. 229-249 ◽  
Author(s):  
V. Khachatryan ◽  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
...  

2016 ◽  
Vol 93 (3) ◽  
Author(s):  
V. Khachatryan ◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
E. Asilar ◽  
...  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton is presented. The search is based on a dataset of pp collisions at $$ \sqrt{s} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying τ -lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing b-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying τ-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into tτ and bν. Scalar leptoquarks decaying exclusively into tτ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into tτ, the lower mass limit is 1.22 TeV.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Wolfgang Kilian ◽  
Sichun Sun ◽  
Qi-Shu Yan ◽  
Xiaoran Zhao ◽  
Zhijie Zhao

Abstract We study the observability of new interactions which modify Higgs-pair production via vector-boson fusion processes at the LHC and at future proton-proton colliders. In an effective-Lagrangian approach, we explore in particular the effect of the operator $$ {h}^2{W}_{\mu \nu}^a{W}^{a,\mu \nu} $$ h 2 W μν a W a , μν , which describes the interaction of the Higgs boson with transverse vector-boson polarization modes. By tagging highly boosted Higgs bosons in the final state, we determine projected bounds for the coefficient of this operator at the LHC and at a future 27 TeV or 100 TeV collider. Taking into account unitarity constraints, we estimate the new-physics discovery potential of Higgs pair production in this channel.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Georges Aad ◽  
Anne-Sophie Berthold ◽  
Thomas Calvet ◽  
Nemer Chiedde ◽  
Etienne Marie Fortin ◽  
...  

AbstractThe ATLAS experiment at the Large Hadron Collider (LHC) is operated at CERN and measures proton–proton collisions at multi-TeV energies with a repetition frequency of 40 MHz. Within the phase-II upgrade of the LHC, the readout electronics of the liquid-argon (LAr) calorimeters of ATLAS are being prepared for high luminosity operation expecting a pileup of up to 200 simultaneous proton–proton interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases the difficulty of energy reconstruction by the calorimeter detector. Real-time processing of digitized pulses sampled at 40 MHz is performed using field-programmable gate arrays (FPGAs). To cope with the signal pileup, new machine learning approaches are explored: convolutional and recurrent neural networks outperform the optimal signal filter currently used, both in assignment of the reconstructed energy to the correct proton bunch crossing and in energy resolution. The improvements concern in particular energies derived from overlapping pulses. Since the implementation of the neural networks targets an FPGA, the number of parameters and the mathematical operations need to be well controlled. The trained neural network structures are converted into FPGA firmware using automated implementations in hardware description language and high-level synthesis tools. Very good agreement between neural network implementations in FPGA and software based calculations is observed. The prototype implementations on an Intel Stratix-10 FPGA reach maximum operation frequencies of 344–640 MHz. Applying time-division multiplexing allows the processing of 390–576 calorimeter channels by one FPGA for the most resource-efficient networks. Moreover, the latency achieved is about 200 ns. These performance parameters show that a neural-network based energy reconstruction can be considered for the processing of the ATLAS LAr calorimeter signals during the high-luminosity phase of the LHC.


Sign in / Sign up

Export Citation Format

Share Document