scholarly journals Type-I 2HDM under the Higgs and electroweak precision measurements

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ning Chen ◽  
Tao Han ◽  
Shuailong Li ◽  
Shufang Su ◽  
Wei Su ◽  
...  

Abstract We explore the extent to which future precision measurements of the Standard Model (SM) observables at the proposed Z-factories and Higgs factories may have impacts on new physics beyond the Standard Model, as illustrated by studying the Type-I Two-Higgs-doublet model (Type-I 2HDM). We include the contributions from the heavy Higgs bosons at the tree-level and at the one-loop level in a full model-parameter space. While only small tan β region is strongly constrained at tree level, the large tan β region gets constrained at loop level due to tan β enhanced tri-Higgs couplings. We perform a multiple variable χ2 fit with non-alignment and non-degenerate masses. We find that the allowed parameter ranges could be tightly constrained by the future Higgs precision measurements, especially for small and large values of tan β. Indirect limits on the masses of heavy Higgs bosons can be obtained, which can be complementary to the direct searches of the heavy Higgs bosons at hadron colliders. We also find that the expected accuracies at the Z-pole and at a Higgs factory are quite complementary in constraining mass splittings of heavy Higgs bosons. The typical results are | cos(β − α)| < 0.05, |∆mΦ| < 200 GeV, and tan β ≳ 0.3. The reaches from CEPC, Fcc-ee and ILC are also compared, for both Higgs and Z-pole precision measurements. Comparing to the Type-II 2HDM, the 95% C.L. allowed range of cos(β − α) is larger, especially for large values of tan β.

1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


2020 ◽  
Vol 35 (24) ◽  
pp. 2050141
Author(s):  
Carlos M. Farrera ◽  
Alejandro Granados-González ◽  
Héctor Novales-Sánchez ◽  
J. Jesús Toscano

Kaluza–Klein fields characterizing, from a four-dimensional viewpoint, the presence of compact universal extra dimensions would alter low-energy observables through effects determined by some compactification scale, [Formula: see text], since the one-loop level, thus being particularly relevant for physical phenomena forbidden at tree level by the Standard Model. This paper explores, for the case of one universal extra dimension, such new-physics contributions to Higgs decays [Formula: see text], into pairs of quarks with different flavors, a sort of decay process which, in the Standard Model, strictly occurs at the loop level. Finite results, decoupling as [Formula: see text], are calculated. Approximate short expressions, valid for large compactification scales, are provided. We estimate that Kaluza–Klein contributions lie below predictions from the Standard Model, being about 2 to 3 orders of magnitude smaller for compactification scales within [Formula: see text].


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 461
Author(s):  
António P. Morais ◽  
Roman Pasechnik ◽  
Werner Porod

The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E6×SU(2)F×U(1)F GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Peter Athron ◽  
Csaba Balázs ◽  
Douglas H. J. Jacob ◽  
Wojciech Kotlarski ◽  
Dominik Stöckinger ◽  
...  

Abstract The Fermilab Muon g −2 experiment recently reported its first measurement of the anomalous magnetic moment $$ {a}_{\mu}^{\mathrm{FNAL}} $$ a μ FNAL , which is in full agreement with the previous BNL measurement and pushes the world average deviation $$ \Delta {a}_{\mu}^{2021} $$ ∆ a μ 2021 from the Standard Model to a significance of 4.2σ. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for aμ, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large ∆aμ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large ∆aμ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the aμ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of aμ only in specific versions and in specific parameter ranges. Among all models with up to three fields, only models with chirality enhancements can accommodate aμ and dark matter simultaneously. The MSSM can simultaneously explain aμ and dark matter for Bino-like LSP in several coannihilation regions. Allowing under abundance of the dark matter relic density, the Higgsino- and particularly Wino-like LSP scenarios become promising explanations of the aμ result.


2019 ◽  
Vol 34 (13n14) ◽  
pp. 1940012 ◽  
Author(s):  
Ning Chen ◽  
Jiayin Gu ◽  
Tao Han ◽  
Honglei Li ◽  
Zhen Liu ◽  
...  

Studying the properties of the Higgs boson can be an important window to explore the physics beyond the Standard Model (SM). In this work, we present studies on the implications of the Higgs precision measurements at future Higgs Factories. We perform a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter spaces of two-Higgs Doublet Model (2HDM) and Minimal Supersymmetric Standard Model (MSSM). In the 2HDM, we analyze tree-level effects as well as one-loop contributions from the heavy Higgs bosons. The strong constraints on [Formula: see text], heavy Higgs masses and their mass splitting are complementary to direct search of the LHC as well as possible future [Formula: see text] pole precision measurements. For the MSSM, we study both the Higgs couplings and mass precisions. The constraints on the CP-odd Higgs mass [Formula: see text] and stop mass scale [Formula: see text] can be complementary to the direct search of HL-LHC. We also compare the sensitivity of various future Higgs factories, namely, Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


2019 ◽  
Author(s):  
B. Lee Roberts

I discuss the history of the muon (g-2)(g−2) measurements, beginning with the Columbia-Nevis measurement that observed parity violation in muon decay, and also measured the muon gg-factor for the first time, finding g_\mu=2gμ=2. The theoretical (Standard Model) value contains contributions from quantum electrodynamics, the strong interaction through hadronic vacuum polarization and hadronic light-by-light loops, as well as the electroweak contributions from the WW, ZZ and Higgs bosons. The subsequent experiments, first at Nevis and then with increasing precision at CERN, measured the muon anomaly a_\mu = (g_\mu-2)/2aμ=(gμ−2)/2 down to a precision of 7.3 parts per million (ppm). The Brookhaven National Laboratory experiment E821 increased the precision to 0.54 ppm, and observed for the first time the electroweak contributions. Interestingly, the value of a_\muaμ measured at Brookhaven appears to be larger than the Standard Model value by greater than three standard deviations. A new experiment, Fermilab E989, aims to improve on the precision by a factor of four, to clarify whether this result is a harbinger of new physics entering through loops, or from some experimental, statistical or systematic issue.


2014 ◽  
Vol 31 ◽  
pp. 1460288 ◽  
Author(s):  
R. Mankel ◽  

While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the Standard Model interpretation, various possibilities for extended Higgs sectors are being considered. The minimal supersymmetric extension (MSSM) features two Higgs doublets resulting in five physical Higgs bosons, which are subject to direct searches. Alternatively, more generic Two-Higgs Doublet models (2HDM) are used for the interpretation of results. The Next-to-Minimal Supersymmetric Model (NMSSM) has a more complex Higgs sector with seven physical states. Also exotic Higgs bosons decaying to invisible final states are considered. This article summarizes recent findings based on results from collider experiments.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Isabell Engeln ◽  
Pedro Ferreira ◽  
M. Margarete Mühlleitner ◽  
Rui Santos ◽  
Jonas Wittbrodt

Abstract We discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h125 → γγ together with the discovery of a new scalar with specific rates to τ+τ− or γγ could exclude some phases and point to a specific phase.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850169 ◽  
Author(s):  
E. Di Salvo ◽  
F. Fontanelli ◽  
Z. J. Ajaltouni

We examine in detail the semileptonic decay [Formula: see text], which may confirm previous hints, from the analogous [Formula: see text] decay, of a new physics beyond the Standard Model. First of all, starting from rather general assumptions, we predict the partial width of the decay. Then we analyze the effects of five possible new physics interactions, adopting in each case five different form factors. In particular, for each term beyond the Standard Model, we find some constraints on the strength and phase of the coupling, which we combine with those found by other authors in analyzing the analogous semileptonic decays of [Formula: see text]. Our analysis involves some dimensionless quantities, substantially independent of the form factor, but which, owing to the constraints, turn out to be strongly sensitive to the kind of nonstandard interaction. We also introduce a criterion thanks to which one can discriminate among the various new physics terms: the left-handed current and the two-Higgs-doublet model appear privileged, with a neat preference for the former interaction. Finally, we suggest a differential observable that could, in principle, help to distinguish between the two cases.


Sign in / Sign up

Export Citation Format

Share Document