scholarly journals Non-invertible global symmetries and completeness of the spectrum

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ben Heidenreich ◽  
Jacob McNamara ◽  
Miguel Montero ◽  
Matthew Reece ◽  
Tom Rudelius ◽  
...  

Abstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 393
Author(s):  
Jan F. Haase ◽  
Luca Dellantonio ◽  
Alessio Celi ◽  
Danny Paulson ◽  
Angus Kan ◽  
...  

Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit' while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use 2+1 dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.


2021 ◽  
Author(s):  
◽  
Jack Holligan

Yang-Mills theories based on the symplectic groups – denoted by Sp(2N) – are inter-esting for both theoretical and phenomenological reasons. Sp(2N) theories with two fundamental Dirac fermions give rise to pseudo-Nambu-Goldstone bosons which can be interpreted as a composite Higgs particle. This framework can describe the existing Higgs boson without the need for unnatural fine-tuning. This justifies a programme of wider investigations of Sp(2N) gauge theories aimed at understanding their general behaviour. In this work, we study the glueball mass spectrum for Sp(2N) Yang-Mills theories using the variational method applied to Monte-Carlo generated gauge config-urations. This is carried out both for finite N and in the limit N → ∞. The results are compared to existing results for SU(N) Yang-Mills theories, again, for finite- and large-N. Our glueball analysis is then used to investigate some conjectures related to the behaviour of the spectrum in Yang-Mills theories based on a generic non-Abeliangauge group G. We also find numerical evidence that Sp(2N) groups confine both for finite and large N. As well as studying the glueball spectrum, we examine the quenched-meson spectrum for fermions in the fundamental, antisymmetric and sym-metric representations for N = 2 and N = 3. This study enables us to provide a first account of how the related observables vary with N. The investigations presented in this work contribute to our understanding of the non-perturbative dynamics of Sp(2N) gauge theories in connection with Higgs compositeness and, more in general, with fun-damental open problems in non-Abelian gauge theories such as confinement and global symmetry breaking.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Pietro Benetti Genolini ◽  
Luigi Tizzano

Abstract All five-dimensional non-abelian gauge theories have a U(1)I global symmetry associated with instantonic particles. We describe an obstruction to coupling U(1)I to a classical background gauge field that occurs whenever the theory has a one-form center symmetry. This is a finite-order mixed ’t Hooft anomaly between the two symmetries. We also show that a similar obstruction takes place in gauge theories with fundamental matter by studying twisted bundles for the ordinary flavor symmetry. We explore some general dynamical properties of the candidate phases implied by the anomaly. Finally, we apply our results to supersymmetric gauge theories in five dimensions and analyze the symmetry enhancement patterns occurring at their conjectured RG fixed points.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Po-Shen Hsin ◽  
Ho Tat Lam

Gauge theories in various dimensions often admit discrete theta angles, that arise from gauging a global symmetry with an additional symmetry protected topological (SPT) phase. We discuss how the global symmetry and ’t Hooft anomaly depends on the discrete theta angles by coupling the gauge theory to a topological quantum field theory (TQFT). We observe that gauging an Abelian subgroup symmetry, that participates in symmetry extension, with an additional SPT phase leads to a new theory with an emergent Abelian symmetry that also participates in a symmetry extension. The symmetry extension of the gauge theory is controlled by the discrete theta angle which comes from the SPT phase. We find that discrete theta angles can lead to two-group symmetry in 4d4d QCD with SU(N),SU(N)/\mathbb{Z}_kSU(N),SU(N)/ℤk or SO(N)SO(N) gauge groups as well as various 3d3d and 2d2d gauge theories.


1995 ◽  
Vol 10 (22) ◽  
pp. 1635-1658 ◽  
Author(s):  
P. RAMADEVI ◽  
T.R. GOVINDARAJAN ◽  
R.K. KAUL

We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-Abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) r-strand composite braids. Salient features of the theory of such composite braids are presented. Representations of generators for these braids are obtained by exploiting properties of Hilbert spaces associated with the correlators of Wess-Zumino conformal field theories. The r-composite invariants for the knots are given by the sum of elementary Chern-Simons invariants associated with the irreducible representations in the product of r representations (allowed by the fusion rules of the corresponding Wess-Zumino conformal field theory) placed on r individual strands of the composite braid. On the other hand, composite invariants for links are given by a weighted sum of elementary multicolored Chern-Simons invariants. Some mutant links can be distinguished through the composite invariants, but mutant knots do not share this property. The results, though developed in detail within the framework of SU(2) Chern-Simons theory are valid for any other non-Abelian gauge groups.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Masazumi Honda ◽  
Yuya Tanizaki

Abstract We study a four-dimensional U(1) gauge theory with the θ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at θ = π, and show how its appearance can be consistent with the anomaly constraint. We also construct the SL(2, ℤ) self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed ’t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and ’t Hooft anomaly with those of SU(N) Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero θ angles.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Changha Choi ◽  
Eliezer Rabinovici

Abstract In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in D = 4 space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain families of non-supersymmetric large N gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in [1, 2] where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions.In our case, the theories demonstrating the above features have gauge groups which are specific products of SO(N) in one family and SU(N) in the other. Working in a perturbative regime at the N → ∞ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is ℤ2 in one family of theories and U(1) in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.


Sign in / Sign up

Export Citation Format

Share Document