scholarly journals Dynamical Cobordism and Swampland Distance Conjectures

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ginevra Buratti ◽  
José Calderón-Infante ◽  
Matilda Delgado ◽  
Angel M. Uranga

Abstract We consider spacetime-dependent solutions to string theory models with tadpoles for dynamical fields, arising from non-trivial scalar potentials. The solutions have necessarily finite extent in spacetime, and are capped off by boundaries at a finite distance, in a dynamical realization of the Cobordism Conjecture. We show that as the configuration approaches these cobordism walls of nothing, the scalar fields run off to infinite distance in moduli space, allowing to explore the implications of the Swampland Distance Conjecture. We uncover new interesting scaling relations linking the moduli space distance and the SDC tower scale to spacetime geometric quantities, such as the distance to the wall and the scalar curvature. We show that walls at which scalars remain at finite distance in moduli space correspond to domain walls separating different (but cobordant) theories/vacua; this still applies even if the scalars reach finite distance singularities in moduli space, such as conifold points.We illustrate our ideas with explicit examples in massive IIA theory, M-theory on CY threefolds, and 10d non-supersymmetric strings. In 4d $$ \mathcal{N} $$ N = 1 theories, our framework reproduces a recent proposal to explore the SDC using 4d string-like solutions.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Fengjun Xu

Abstract In this note, we study the Swampland Distance Conjecture in TCS G2 manifold compactifications of M-theory. In particular, we are interested in testing a refined version — the Emergent String Conjecture, in settings with 4d N = 1 supersymmetry. We find that a weakly coupled, tensionless fundamental heterotic string does emerge at the infinite distance limit characterized by shrinking the K3-fiber in a TCS G2 manifold. Such a fundamental tensionless string leads to the parametrically leading infinite tower of asymptotically massless states, which is in line with the Emergent String Conjecture. The tensionless string, however, receives quantum corrections. We check that these quantum corrections do modify the volume of the shrinking K3-fiber via string duality and hence make the string regain a non-vanishing tension at the quantum level, leading to a decompactification. Geometrically, the quantum corrections modify the metric of the classical moduli space and are expected to obstruct the infinite distance limit. We also comment on another possible type of infinite distance limit in TCS G2 compactifications, which might lead to a weakly coupled fundamental type II string theory.


2013 ◽  
Vol 28 (31) ◽  
pp. 1350137 ◽  
Author(s):  
GEUSA DE A. MARQUES ◽  
V. B. BEZERRA ◽  
SHI-HAI DONG

We consider the problem of a relativistic particle with position-dependent mass in the presence of a Coulomb and a scalar potentials in the background spacetime generated by a cosmic string. The scalar potential arises from the self-interaction potential which is induced by the conical geometry of the spacetime under consideration. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle. The behavior of the energy levels on the parameters associated with the presence of the cosmic string and with the fact that the mass of the particle depends on its position is also analyzed.


1998 ◽  
Vol 13 (03) ◽  
pp. 239-252 ◽  
Author(s):  
W. A. SABRA

An algorithm for constructing general static black hole configuration for the theory of N=2, d= 5 supergravity coupled to an arbitrary number of Abelain vector multiplets is given. The underlying very special geometry structure plays a major role in this construction. From the viewpoint of M-theory compactified on a Calabi–Yau threefold, these black holes are identified with BPS winding states of the membrane around two-cycles of the Calabi–Yau threefold, and thus are of importance in the probing of the phase transitions in the moduli space of M-theory compactified on a Calabi–Yau threefold.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350084 ◽  
Author(s):  
BOBBY E. GUNARA ◽  
FREDDY P. ZEN ◽  
FIKI T. AKBAR ◽  
AGUS SUROSO ◽  
ARIANTO

In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings.


2004 ◽  
Vol 19 (04) ◽  
pp. 521-555 ◽  
Author(s):  
GOTTFRIED CURIO

The membrane instanton superpotential for M-theory on the G2 holonomy manifold given by the cone on S3×S3 is given by the dilogarithm and has Heisenberg monodromy group in the quantum moduli space. We compare this to a Heisenberg group action on the type IIA hypermultiplet moduli space for the universal hypermultiplet, to metric corrections from membrane instantons related to a twisted dilogarithm for the deformed conifold and to a flat bundle related to a conifold period, the Heisenberg group and the dilogarithm appearing in five-dimensional Seiberg/Witten theory.


2000 ◽  
Vol 580 (1-2) ◽  
pp. 225-242 ◽  
Author(s):  
Klaus Behrndt ◽  
Sergei Gukov
Keyword(s):  

1997 ◽  
Vol 12 (15) ◽  
pp. 1087-1094 ◽  
Author(s):  
H. Lü ◽  
C. N. Pope

We discuss the vertical dimensional reduction of M-sbranes to domain walls in D=7 and D=4, by dimensional reduction on Ricci-flat four-manifolds and seven-manifolds. In order to interpret the vertically-reduced five-brane as a domain wall solution of a dimensionally-reduced theory in D=7, it is necessary to generalize the usual Kaluza–Klein ansatz, so that the three-form potential in D=11 has an additional term that can generate the necessary cosmological term in D=7. We show how this can be done for general four-manifolds, extending previous results for toroidal compactifications. By contrast, no generalization of the Kaluza–Klein ansatz is necessary for the compactification of M-theory to a D=4 theory that admits the domain-wall solution coming from the membrane in D=11.


2005 ◽  
Vol 20 (27) ◽  
pp. 6211-6219
Author(s):  
A. BERNDSEN

Brane Gas Cosmology (BGC) is an M-theory motivated attempt to reconcile aspects of standard cosmology based on Einstein's theory of general relativity. The background in this framework is described by dilaton gravity, which introduces various moduli fields for the shape and size of the extra dimensions and the dilaton. Following previous successes in this field, we dimensionally reduce a gas of strings and branes to the d + 1-dimensional Einstein frame with the hopes of understanding late-time BGC. This procedure generates an effective potential for the moduli fields, which we analyze in the hopes of stabilizing all fields; however, with the inclusion of strings and branes alone we find one direction remains free to roll away.


Sign in / Sign up

Export Citation Format

Share Document