scholarly journals Gravitational footprints of black holes and their microstate geometries

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ibrahima Bah ◽  
Iosif Bena ◽  
Pierre Heidmann ◽  
Yixuan Li ◽  
Daniel R. Mayerson

Abstract We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries (that are comparable in size to a black hole) have a similar multipole structure as their corresponding black hole, with deviations to the black hole multipole values set by the scale of their microstructure.

2015 ◽  
Vol 24 (12) ◽  
pp. 1544022 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

Kerr black holes (BHs) have their angular momentum, [Formula: see text], bounded by their mass, [Formula: see text]: [Formula: see text]. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, [Formula: see text]. The [Formula: see text] bound is simply that [Formula: see text] cannot exceed the velocity of light. We verify the [Formula: see text] bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the [Formula: see text] bound.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1017
Author(s):  
Bogeun Gwak

We investigate the energy of the gravitational wave from a binary black hole merger by the coalescence of two Kerr black holes with an orbital angular momentum. The coalescence is constructed to be consistent with particle absorption in the limit in which the primary black hole is sufficiently large compared with the secondary black hole. In this limit, we analytically obtain an effective gravitational spin–orbit interaction dependent on the alignments of the angular momenta. Then, binary systems with various parameters including equal masses are numerically analyzed. According to the numerical analysis, the energy of the gravitational wave still depends on the effective interactions, as expected from the analytical form. In particular, we ensure that the final black hole obtains a large portion of its spin angular momentum from the orbital angular momentum of the initial binary black hole. To estimate the angular momentum released by the gravitational wave in the actual binary black hole, we apply our results to observations at the Laser Interferometer Gravitational-Wave Observatory: GW150914, GW151226, GW170104, GW170608 and GW170814.


2006 ◽  
Vol 2 (S238) ◽  
pp. 359-360
Author(s):  
Michal Dovčiak ◽  
Vladimír Karas ◽  
Giorgio Matt

AbstractThe polarization from a spot orbiting around Schwarzschild and extreme Kerr black holes is studied. The time dependence of the degree and angle of polarization during the spot revolution is examined as a function of the observer's inclination angle and black hole angular momentum. The gravitational and Doppler shifts, lensing effect as well as time delays are taken into account.


2020 ◽  
Vol 35 (24) ◽  
pp. 2050203
Author(s):  
M. Ghanaatian ◽  
Mehdi Sadeghi ◽  
Hadi Ranjbari ◽  
Gh. Forozani

In this paper, we study AdS-Schwarzschild black holes in four and five dimensions in dRGT minimally coupled to a cloud of strings. It is observed that the entropy of the string cloud and massive terms does not affect the black hole entropy. The observations about four dimensions indicate that the massive term in the presence of external string cloud cannot exhibit Van der Waals-like behavior for AdS-Schwarzschild black holes and, therefore there is only the Hawking–Page phase transition. In contrast, in five dimensions, the graviton mass modifies this behavior through the third massive term, so that a critical behavior and second-order phase transition is deduced. Also, the Joule–Thomson effect is not observed. The black hole stability conditions are also studied in four and five dimensions and a critical value for the string cloud parameter is presented. In five dimensions a degeneracy between states for extremal black holes is investigated. After studying black holes as thermodynamic systems, we consider such systems as heat engines, and finally the efficiency of them is calculated.


2011 ◽  
Vol 20 (supp01) ◽  
pp. 73-78
Author(s):  
ALAIN ULACIA REY

Using the Sen's mechanism we calculate the entropy for an AdS2 × Sd-2 extremal and static black hole in four dimensions, with higher derivative terms that comes from a three parameter non-minimal Einstein-Maxwell theory. The explicit results for Gauss-Bonnet in the gauge-gravity sector are shown.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


Sign in / Sign up

Export Citation Format

Share Document