scholarly journals Islands and Page curves of Reissner-Nordström black holes

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yi Ling ◽  
Yuxuan Liu ◽  
Zhuo-Yu Xian

Abstract We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tension, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at t = 0. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.


Author(s):  
Xueyi Tian

The black hole information paradox is one of the most puzzling paradoxes in physics. Black holes trap everything that falls into them, while their mass may leak away through purely thermal Hawking radiation. When a black hole vanishes, all the information locked inside, if any, is just lost, thus challenging the principles of quantum mechanics. However, some information does have a way to escape from inside the black hole, that is, through gravitational waves. Here, a concise extension of this notion is introduced. When a black hole swallows something, whether it is a smaller black hole or an atom, the system emits gravitational waves carrying the information about the “food”. Although most of the signals are too weak to be detected, the information encoded within them will persist in the universe. This speculation provides an explanation for a large part, if not all, of the supposed “information loss” in black holes, and thus reconciles the predictions of general relativity and quantum mechanics.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1001-1004
Author(s):  
SAMIR D. MATHUR

Results from string theory strongly suggest that formation and evaporation of black holes is a unitary process. Thus we must find a flaw in the semiclassical reasoning that implies a loss of information. We propose a new criterion that limits the domain of classical gravity: the hypersurfaces of a foliation cannot be stretched too much.


2013 ◽  
Vol 11 (01) ◽  
pp. 1450010 ◽  
Author(s):  
MIR FAIZAL

In this paper we will analyze the black hole information paradox in group field cosmology. We will first construct a group field cosmology with third quantized gauge symmetry. Then we will argue that in this group field cosmology the process that changes the topology of spacetime is unitarity process. Thus, the information paradox from this perspective appears only because we are using a second quantized formalism to explain a third quantized process. A similar paradox would also occur if we analyze a second quantized process in first quantized formalism. Hence, we will demonstrate that in reality there is no information paradox but only a breakdown of the second quantized formalism.


2020 ◽  
Vol 29 (11) ◽  
pp. 17-25
Author(s):  
Sang-Heon YI ◽  
Dong-han YEOM

In this article, we discuss the information loss problem of black holes and critically review candidate resolutions of the problem. As a black hole evaporates via Hawking radiation, it seems to lose original quantum information; this indicates that the unitarity of time evolution in quantum mechanics and the fundamental predictability of physics are lost. We categorized candidate resolutions by asking (1) where information is and (2) which principle of physics is changed. We also briefly comment on the recent progress in the string theory community. Finally, we present several remarks for future perspectives.


2019 ◽  
Vol 16 (10) ◽  
pp. 1950156
Author(s):  
Carlos Castro Perelman

After a brief review of the thermal relativistic corrections to the Schwarzschild black hole entropy, it is shown how the Stefan–Boltzman law furnishes large modifications to the evaporation times of Planck-size mini-black holes, and which might furnish important clues to the nature of dark matter and dark energy since one of the novel consequences of thermal relativity is that black holes do not completely evaporate but leave a Planck size remnant. Equating the expression for the modified entropy (due to thermal relativity corrections) with Wald’s entropy should, in principle, determine the functional form of the modified gravitational Lagrangian [Formula: see text]. We proceed to derive the generalized uncertainty relation which corresponds to the effective temperature [Formula: see text] associated with thermal relativity and given in terms of the Hawking ([Formula: see text]) and Planck ([Formula: see text]) temperature, respectively. Such modified uncertainty relation agrees with the one provided by string theory up to first order in the expansion in powers of [Formula: see text]. Both lead to a minimal length (Planck size) uncertainty. Finally, an explicit analytical expression is found for the modifications to the purely thermal spectrum of Hawking radiation which could cast some light into the resolution of the black hole information paradox.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hong Zhe Chen ◽  
Zachary Fisher ◽  
Juan Hernandez ◽  
Robert C. Myers ◽  
Shan-Ming Ruan

Abstract We study the doubly holographic model of [1] in the situation where a black hole in two-dimensional JT gravity theory is coupled to an auxiliary bath system at arbitrary finite temperature. Depending on the initial temperature of the black hole relative to the bath temperature, the black hole can lose mass by emitting Hawking radiation, stay in equilibrium with the bath or gain mass by absorbing thermal radiation from the bath. In all of these scenarios, a unitary Page curve is obtained by applying the usual prescription for holographic entanglement entropy and identifying the quantum extremal surface for the generalized entropy, using both analytical and numeric calculations. As the application of the entanglement wedge reconstruction, we further investigate the reconstruction of the black hole interior from a subsystem containing the Hawking radiation. We examine the roles of the Hawking radiation and also the purification of the thermal bath in this reconstruction.


Author(s):  
Michael Kachelriess

Black holes are introduced as solutions of Einsteins equations contain-ing a physical singularity covered by an event horizon. The properties of Schwarzschild and of Kerr black holes are examined. It is demonstrated that the event horizon of a black hole can only increase within classical physics. However, the event horizon is an infinite redshift surface and emits in the semi-classical picture thermal radiation. This Hawking radiation leads in turn to the information paradox.


Sign in / Sign up

Export Citation Format

Share Document