scholarly journals How smooth is quantum complexity?

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Vir B. Bulchandani ◽  
S. L. Sondhi

Abstract The “quantum complexity” of a unitary operator measures the difficulty of its construction from a set of elementary quantum gates. While the notion of quantum complexity was first introduced as a quantum generalization of the classical computational complexity, it has since been argued to hold a fundamental significance in its own right, as a physical quantity analogous to the thermodynamic entropy. In this paper, we present a unified perspective on various notions of quantum complexity, viewed as functions on the space of unitary operators. One striking feature of these functions is that they can exhibit non-smooth and even fractal behaviour. We use ideas from Diophantine approximation theory and sub-Riemannian geometry to rigorously quantify this lack of smoothness. Implications for the physical meaning of quantum complexity are discussed.

2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


Author(s):  
Fei Yan ◽  
Abdullah Iliyasu ◽  
Kaoru Hirota

This study presents a modest attempt to interpret, formulate, and manipulate emotion of robots within the precepts of quantum mechanics. Our proposed framework encodes the emotion information as a superposition state whilst unitary operators are used to manipulate the transition of the emotion states which are recovered via appropriate quantum measurement operations. The framework described provides essential steps towards exploiting the potency of quantum mechanics in a quantum affective computing paradigm. Further, the emotions of multi-robots in a specified communication scenario are fused using quantum entanglement thereby reducing the number of qubits required to capture the emotion states of all the robots in the environment, and fewer quantum gates are needed to transform the emotion of all or part of the robots from one state to another. In addition to the mathematical rigours expected of the proposed framework, we present a few simulation-based demonstrations to illustrate its feasibility and effectiveness. This exposition is an important step in the transition of formulations of emotional intelligence to the quantum era.


1968 ◽  
Vol 32 ◽  
pp. 141-153 ◽  
Author(s):  
Masasi Kowada

It is an important problem to determine the spectral type of automorphisms or flows on a probability measure space. We shall deal with a unitary operator U and a 1-parameter group of unitary operators {Ut} on a separable Hilbert space H, and discuss their spectral types, although U and {Ut} are not necessarily supposed to be derived from an automorphism or a flow respectively.


2020 ◽  
Vol 18 (01) ◽  
pp. 1941026 ◽  
Author(s):  
Rinie N. M. Nasir ◽  
Jesni Shamsul Shaari ◽  
Stefano Mancini

Analogous to the notion of mutually unbiased bases for Hilbert spaces, we consider mutually unbiased unitary bases (MUUBs) for the space of operators, [Formula: see text], acting on such Hilbert spaces. The notion of MUUB reflects the equiprobable guesses of unitary operators in one basis of [Formula: see text] when estimating a unitary operator in another. Though, for prime dimension [Formula: see text], the maximal number of MUUBs is known to be [Formula: see text], there is no known recipe for constructing them, assuming they exist. However, one can always construct a minimum of three MUUBs, and the maximal number is approached for very large values of [Formula: see text]. MUUBs can also exist for some [Formula: see text]-dimensional subspace of [Formula: see text] with the maximal number being [Formula: see text].


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
H. R. Fernández-Morales ◽  
A. G. García ◽  
M. A. Hernández-Medina ◽  
M. J. Muñoz-Bouzo

This paper is concerned with the characterization as frames of some sequences inU-invariant spaces of a separable Hilbert spaceℋwhereUdenotes an unitary operator defined onℋ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces inL2ℝ, where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In doing so, we need the unitary operatorUto belong to a continuous group of unitary operators.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 100
Author(s):  
Fei Yan ◽  
Abdullah M. Iliyasu ◽  
Kaoru Hirota

This study presents a modest attempt to interpret, formulate, and manipulate the emotion of robots within the precepts of quantum mechanics. Our proposed framework encodes emotion information as a superposition state, whilst unitary operators are used to manipulate the transition of emotion states which are subsequently recovered via appropriate quantum measurement operations. The framework described provides essential steps towards exploiting the potency of quantum mechanics in a quantum affective computing paradigm. Further, the emotions of multi-robots in a specified communication scenario are fused using quantum entanglement, thereby reducing the number of qubits required to capture the emotion states of all the robots in the environment, and therefore fewer quantum gates are needed to transform the emotion of all or part of the robots from one state to another. In addition to the mathematical rigours expected of the proposed framework, we present a few simulation-based demonstrations to illustrate its feasibility and effectiveness. This exposition is an important step in the transition of formulations of emotional intelligence to the quantum era.


1972 ◽  
Vol 15 (2) ◽  
pp. 215-217 ◽  
Author(s):  
I. Istrǎțescu

In [6] B. Sz.-Nagy has proved that every operator on a Hilbert space such that1is similar to a unitary operator.The following problem is an extension of this result: If T and S are two operators such that1.sup {‖Tn‖, ‖Sn‖}<∞ (n = 0, ±1, ±2,…)2.TS = STthen there exists a selfadjoint operator Q such that QTQ-1, QSQ-1 are unitary operators?Also, in [7] B. Sz.-Nagy has proved that every compact operator T such thatsup ‖Tn‖<∞ (n = 1, 2, 3,…)is similar to a contraction.


2009 ◽  
Vol 20 (06) ◽  
pp. 891-899
Author(s):  
YORICK HARDY ◽  
WILLI-HANS STEEB

We consider finite-dimensional Hilbert spaces [Formula: see text] with [Formula: see text] with n ≥ 2 and unitary operators. In particular, we consider the case n = 2m, where m ≥ 2 in order to study entanglement of states in these Hilbert spaces. Two normalized states ψ and ϕ in these Hilbert spaces [Formula: see text] are connected by a unitary transformation (n×n unitary matrices), i.e. ψ = Uϕ, where U is a unitary operator UU* = I. Given the normalized states ψ and ϕ, we provide an algorithm to find this unitary operator U for finite-dimensional Hilbert spaces. The construction is based on a modified Gram–Schmidt orthonormalization technique. A number of applications important in quantum computing are given. Symbolic C++ is used to give a computer algebra implementation in C++.


Sign in / Sign up

Export Citation Format

Share Document