scholarly journals Chern-Weil global symmetries and how quantum gravity avoids them

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ben Heidenreich ◽  
Jacob McNamara ◽  
Miguel Montero ◽  
Matthew Reece ◽  
Tom Rudelius ◽  
...  

Abstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F2 ∧ H3 and tr($$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.

Author(s):  
Nicolás Valdés-Meller

We argue that quantum gravity is nonlocal, first by recalling well-known arguments that support this idea and then by focusing on a point not usually emphasized: that making a conventional effective field theory (EFT) for quantum gravity is particularly difficult, and perhaps impossible in principle. This inability to realize an EFT comes down to the fact that gravity itself sets length scales for a problem: when integrating out degrees of freedom above some cutoff, the effective metric one uses will be different, which will itself re-define the cutoff. We also point out that even if the previous problem is fixed, naïvely applying EFT in gravity can lead to problems — we give a particular example in the case of black holes.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Passant Ali ◽  
Astrid Eichhorn ◽  
Martin Pauly ◽  
Michael M. Scherer

Abstract The question whether global symmetries can be realized in quantum-gravity-matter-systems has far-reaching phenomenological consequences. Here, we collect evidence that within an asymptotically safe context, discrete global symmetries of the form ℤn, n > 4, cannot be realized in a near-perturbative regime. In contrast, an effective-field-theory approach to quantum gravity might feature such symmetries, providing a mechanism to generate mass hierarchies in the infrared without the need for additional fine-tuning.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 171
Author(s):  
Folkert Kuipers ◽  
Xavier Calmet

In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this theory from the Jordan frame to the Einstein frame, we show that the massive spin-2 field violates the null energy condition, while the massive spin-0 field satisfies the null energy condition, but may violate the strong energy condition. Due to this violation, classical singularity theorems are no longer applicable, indicating that singularities can be avoided, if the leading quantum corrections are taken into account.


2018 ◽  
Vol 175 ◽  
pp. 08011 ◽  
Author(s):  
Ed Bennett ◽  
Deog Ki Hong ◽  
Jong-Wan Lee ◽  
C.-J. David Lin ◽  
Biagio Lucini ◽  
...  

As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 921-930
Author(s):  
HERMANN KREBS

Using chiral effective field theory (EFT) with explicit Δ degrees of freedom we calculated nuclear forces up to next-to-next-to-leading order (N2LO). We find a much improved convergence of the chiral expansion in all peripheral partial waves. We also present a novel lattice EFT method developed for systems with larger number of nucleons. Combining Monte Carlo lattice simulations with EFT allows one to calculate the properties of light nuclei, neutron and nuclear matter. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders show that lattice EFT is a promising tool for quantitative studies of low-energy few- and many-body systems.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442012 ◽  
Author(s):  
Justin Khoury ◽  
Godfrey E. J. Miller ◽  
Andrew J. Tolley

Traditional derivations of general relativity (GR) from the graviton degrees of freedom assume spacetime Lorentz covariance as an axiom. In this paper, we survey recent evidence that GR is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of GR, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of spacetime. This result has revolutionary implications for fundamental physics.


Sign in / Sign up

Export Citation Format

Share Document