scholarly journals Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Leonardo Coito ◽  
Carlos Faubel ◽  
Juan Herrero-García ◽  
Arcadi Santamaria

Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.

2011 ◽  
Vol 26 (27) ◽  
pp. 2039-2049 ◽  
Author(s):  
OLIVER FISCHER ◽  
J. J. VAN DER BIJ

We take the stealth model,1 an inert [Formula: see text] multiplet of real scalar singlets, as a candidate for dark matter. We limit the parameter space on the basis of dark matter abundance and direct search experiments. Further we study briefly a real scalar triplet as dark matter candidate. Then a two-component dark matter model is considered, which consists of a real scalar singlet and a scalar triplet with a Z2×Z2 symmetry. In a narrow mass range, the direct search experiments start to give some limitations.


2005 ◽  
Vol 20 (23) ◽  
pp. 1763-1766 ◽  
Author(s):  
PANKAJ JAIN

We point out that a well-known axion model with an explicit Z(N) symmetry breaking term predicts both dark energy and cold dark matter. We estimate the parameters of this model which fit the observed densities of the dark components of the universe. We find that the parameters do not conflict with any observations.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Leon M. G. de la Vega ◽  
L. J. Flores ◽  
Newton Nath ◽  
Eduardo Peinado

Abstract We explore the possibility of having a fermionic dark matter candidate within U(1)′ models for CEνNS experiments in light of the latest COHERENT data and the current and future dark matter direct detection experiments. A vector-like fermionic dark matter has been introduced which is charged under U(1)′ symmetry, naturally stable after spontaneous symmetry breaking. We perform a complementary investigation using CEνNS experiments and dark matter direct detection searches to explore dark matter as well as Z′ boson parameter space. Depending on numerous other constraints arising from the beam dump, LHCb, BABAR, and the forthcoming reactor experiment proposed by the SBC collaboration, we explore the allowed region of Z′ portal dark matter.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Marzieh Peyravi ◽  
Nematollah Riazi ◽  
Francisco S. N. Lobo

AbstractIn this work, using two scalar fields ($$\phi $$ ϕ , $$\psi $$ ψ ) coupled to 4 + 1 dimensional gravity, we construct novel topological brane solutions through an explicit U(1) symmetry breaking term. The potential of this model is constructed so that two distinct degenerate vacua in the $$\phi $$ ϕ field exist, in analogy to the $$\phi ^{4}$$ ϕ 4 potential. Therefore, brane solutions appear due to the vacuum structure of the $$\phi $$ ϕ field. However, the topology and vacuum structure in the $$\psi $$ ψ direction depends on the symmetry breaking parameter $$\beta ^{2}$$ β 2 , which leads to different types of branes. As a result, one can interpret the present model as a combination of a $$\phi ^{4}$$ ϕ 4 brane with an auxiliary field, which leads to deviations from the $$\phi ^{4}$$ ϕ 4 system with the brane achieving a richer internal structure. Furthermore, we analyse in detail the behaviour of the superpotentials, the warp factors, the Ricci and Kretschmann scalars and the Einstein tensor components. In addition to this, we explore the stability of the brane in terms of the free parameters of the model. The analysis presented here complements previous work and is sufficiently novel to be interesting.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Daniel Dercks ◽  
Tania Robens

AbstractIn this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson Fusion to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model with a dark matter candidate. When including all known theoretical as well as collider constraints, we find that the above can rule out a relatively large part in the $$m_H,\,\lambda _{345}$$mH,λ345 parameter space, for dark scalar masses $$m_H\,\le \,100\,{\mathrm{GeV}}$$mH≤100GeV. Including the latest dark matter constraints, a smaller part of parameter space remains which is solely excluded from the above analysis. We also discuss the sensitivity of monojet searches and multilepton final states from Run II.


2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Seraina Glaus ◽  
Margarete Mühlleitner ◽  
Jonas Müller ◽  
Shruti Patel ◽  
Tizian Römer ◽  
...  

Abstract Having so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Yoshiki Kuroda ◽  
Masayasu Harada ◽  
Shinya Matsuzaki ◽  
Daisuke Jido

Abstract We propose a novel mechanism to reproduce the observed mass hierarchy for scalar mesons lighter than 1 GeV (called the inverse hierarchy), regarding them as mesons made of a quark and an anti-quark ($q\bar{q}$ mesons). The source is provided by the SU(3) flavor-symmetry breaking induced by the U(1) axial anomaly. In particular, the anomaly term including the explicit chiral symmetry breaking plays a significant role in the light scalar meson spectrum. To be concrete, we construct a linear sigma model for scalar mesons of $q\bar{q}$ type together with their pseudoscalar chiral partners, including an anomaly-induced explicit chiral symmetry-breaking term. We find that, due to the proposed mechanism, the inverse hierarchy, i.e., $m\left[ a_0 (980) \right] \simeq m\left[ f_0 (980) \right] > m \left[ K_0^\ast (700) \right] > m \left[ f_0(500) \right]$, is indeed realized. Consequently, the quark content of $f_0 (500)$ is dominated by the isoscalar $\bar uu+ \bar dd$ component, and $f_0 (980)$ by the strange quark bilinear one, $s\bar{s}$.


2001 ◽  
Vol 11 (11) ◽  
pp. 2759-2770
Author(s):  
M. L. RAMÓN ◽  
S. BOCCALETTI ◽  
R. MEUCCI ◽  
E. ALLARIA

The formation and competition of patterns in an annular CO 2 laser has been experimentally and numerically analyzed. The temporal evolution of the different spatial structures increases its richness and complexity during the coexistence of different patterns. A model based on the Maxwell–Bloch equations, including a symmetry breaking term, provides a numerical interpretation of the main experimental features.


Sign in / Sign up

Export Citation Format

Share Document