scholarly journals Holographic M5 branes in AdS7 × S4

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Varun Gupta

Abstract We study classical M5 brane solutions in the probe limit in the AdS7× S4 background geometry that preserve the minimal amount of supersymmetry. These solutions describe the holography of codimension-2 defects in the 6d boundary dual $$ \mathcal{N} $$ N = (0, 2) supersymmetric gauge theories. The general solution is described in terms of holomorphic functions that satisfy a scaling condition. We show the behavior of the world-volume of a special class of BPS solutions near the AdS boundary region can be characterized by general equations, which describe it as intersections of the zeros of holomorphic functions in three complex variables with a 5-sphere.

2012 ◽  
Vol 09 (03) ◽  
pp. 1250017
Author(s):  
A. BELHAJ ◽  
A. ELRHALAMI ◽  
N.-E. FAHSSI ◽  
M. J. I. KHAN ◽  
E. H. SAIDI ◽  
...  

Using quiver gauge theories in (1+2)-dimensions, we give brane realizations of a class of Quantum Hall Solitons (QHS) embedded in Type IIA superstring on the ALE spaces with exotic singularities. These systems are obtained by considering two sets of wrapped D4-branes on 2-spheres. The space-time on which the QHS live is identified with the world-volume of D4-branes wrapped on a collection of intersecting 2-spheres arranged as extended Dynkin diagrams of Lie algebras. The magnetic source is given by an extra orthogonal D4-brane wrapping a generic 2-cycle in the ALE spaces. It is shown as well that data on the representations of Lie algebras fix the filling factor of the QHS. In case of finite Dynkin diagrams, we recover results on QHS with integer and fractional filling factors known in the literature. In case of hyperbolic bilayer models, we obtain amongst others values of filling factors appearing in graphene literature.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Thomas T. Dumitrescu ◽  
Temple He ◽  
Prahar Mitra ◽  
Andrew Strominger

Abstract We establish the existence of an infinite-dimensional fermionic symmetry in four-dimensional supersymmetric gauge theories by analyzing semiclassical photino dynamics in abelian $$ \mathcal{N} $$ N = 1 theories with charged matter. The symmetry is parametrized by a spinor-valued function on an asymptotic S2 at null infinity. It is not manifest at the level of the Lagrangian, but acts non-trivially on physical states, and its Ward identity is the soft photino theorem. The infinite-dimensional fermionic symmetry resides in the same $$ \mathcal{N} $$ N = 1 supermultiplet as the physically non-trivial large gauge symmetries associated with the soft photon theorem.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Max Hübner

Abstract M-theory on local G2-manifolds engineers 4d minimally supersymmetric gauge theories. We consider ALE-fibered G2-manifolds and study the 4d physics from the view point of a partially twisted 7d supersymmetric Yang-Mills theory and its Higgs bundle. Euclidean M2-brane instantons descend to non-perturbative effects of the 7d supersymmetric Yang-Mills theory, which are found to be in one to one correspondence with the instantons of a colored supersymmetric quantum mechanics. We compute the contributions of M2-brane instantons to the 4d superpotential in the effective 7d description via localization in the colored quantum mechanics. Further we consider non-split Higgs bundles and analyze their 4d spectrum.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
M. D. Kuzmichev ◽  
N. P. Meshcheriakov ◽  
S. V. Novgorodtsev ◽  
I. E. Shirokov ◽  
K. V. Stepanyantz

2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


Sign in / Sign up

Export Citation Format

Share Document