scholarly journals The complete singlet contribution to the massless quark form factor at three loops in QCD

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Long Chen ◽  
Michał Czakon ◽  
Marco Niggetiedt

Abstract It is well known that the effect of top quark loop corrections in the axial part of quark form factors (FF) does not decouple in the large top mass or low energy limit due to the presence of the axial-anomaly type diagrams. The top-loop induced singlet-type contribution should be included in addition to the purely massless result for quark FFs when applied to physics in the low energy region, both for the non-decoupling mass logarithms and for an appropriate renormalization scale dependence. In this work, we have numerically computed the so-called singlet contribution to quark FFs with the exact top quark mass dependence over the full kinematic range. We discuss in detail the renormalization formulae of the individual subsets of the singlet contribution to an axial quark FF with a particular flavor, as well as the renormalization group equations that govern their individual scale dependence. Finally we have extracted the 3-loop Wilson coefficient in the low energy effective Lagrangian, renormalized in a $$ \mathrm{non}\hbox{-} \overline{\mathrm{MS}} $$ non ‐ MS ¯ scheme and constructed to encode the leading large mass approximation of our exact results for singlet quark FFs. We have also examined the accuracy of the approximation in the low energy region.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martin Bauer ◽  
Matthias Neubert ◽  
Sophie Renner ◽  
Marvin Schnubel ◽  
Andrea Thamm

Abstract Axions and axion-like particles (ALPs) are well-motivated low-energy relics of high-energy extensions of the Standard Model, which interact with the known particles through higher-dimensional operators suppressed by the mass scale Λ of the new-physics sector. Starting from the most general dimension-5 interactions, we discuss in detail the evolution of the ALP couplings from the new-physics scale to energies at and below the scale of electroweak symmetry breaking. We derive the relevant anomalous dimensions at two-loop order in gauge couplings and one-loop order in Yukawa interactions, carefully considering the treatment of a redundant operator involving an ALP coupling to the Higgs current. We account for one-loop (and partially two-loop) matching contributions at the weak scale, including in particular flavor-changing effects. The relations between different equivalent forms of the effective Lagrangian are discussed in detail. We also construct the effective chiral Lagrangian for an ALP interacting with photons and light pseudoscalar mesons, pointing out important differences with the corresponding Lagrangian for the QCD axion.


2008 ◽  
Vol 35 (6) ◽  
pp. 068001
Author(s):  
T S Wang ◽  
Z Yang ◽  
H Yunemura ◽  
A Nakagawa ◽  
H Y Lv ◽  
...  

1984 ◽  
Vol 148 (4-5) ◽  
pp. 343-346 ◽  
Author(s):  
Namik K. Pak ◽  
Paolo Rossi

1985 ◽  
Vol 165 (1-3) ◽  
pp. 187-192 ◽  
Author(s):  
Hector R. Rubinstein ◽  
Håkan Snellman

1975 ◽  
Vol 53 (20) ◽  
pp. 2315-2320 ◽  
Author(s):  
G. Papini ◽  
S. -R. Valluri

The radiative corrections of second and third order for the process of photoproduction of gravitons in Coulomb and magnetic dipole fields have been calculated.All divergences have been removed either by charge renormalization or regularization. No approximations have been made in the calculation of the second order cross section. In the third order calculation only the extreme relativistic approximation is given. The forms of the effective Lagrangian, corresponding to the low energy approximations have been determined.


2013 ◽  
Vol 61 ◽  
pp. 37-46
Author(s):  
Bitten Bolvig Hansen ◽  
Gilles Cuny ◽  
Bo Wilhelm Rasmussen ◽  
Kenshu Shimada ◽  
Perri Jacobs ◽  
...  

A set of associated vertebrae and teeth of a fossil shark was collected from the lower Lutetian (Middle Eocene) part of the Lillebælt Clay Formation in Denmark. Its vertebral morphology indicates that the individual belongs to an odontaspidid lamniform shark. Although it is here identified as Odontaspididae indet., its tooth morphology suggests that the fossil shark possibly belongs to an undescribed taxon closely allied to Odontaspis or Palaeohypotodus. Based on comparisons with extant Odontaspis, the fossil individual possibly measured about 333 cm in total length. The disarticulated nature of the specimen in a low-energy deposit indicates that the shark carcass must have been lying on the sea floor for some time before its burial. The fossil individual was found along with a possible shed tooth of another indeterminate odontaspidid taxon.


Sign in / Sign up

Export Citation Format

Share Document