scholarly journals The entanglement entropy of typical pure states and replica wormholes

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Erez Y. Urbach

Abstract In a 1+1 dimensional QFT on a circle, we consider the von Neumann entanglement entropy of an interval for typical pure states. As a function of the interval size, we expect a Page curve in the entropy. We employ a specific ensemble average of pure states, and show how to write the ensemble-averaged Rényi entropy as a path integral on a singular replicated geometry. Assuming that the QFT is a conformal field theory with a gravitational dual, we then use the holographic dictionary to obtain the Page curve. For short intervals the thermal saddle is dominant. For large intervals (larger than half of the circle size), the dominant saddle connects the replicas in a non-trivial way using the singular boundary geometry. The result extends the ‘island conjecture’ to a non-evaporating setting.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Pranay Patil ◽  
Ying Tang ◽  
Emanuel Katz ◽  
Anders W. Sandvik

2006 ◽  
Vol 21 (17) ◽  
pp. 3525-3563 ◽  
Author(s):  
ANDRÉ VAN TONDER

We present a coordinate-invariant approach, based on a Pauli–Villars measure, to the definition of the path integral in two-dimensional conformal field theory. We discuss some advantages of this approach compared to the operator formalism and alternative path integral approaches. We show that our path integral measure is invariant under conformal transformations and field reparametrizations, in contrast to the measure used in the Fujikawa calculation, and we show the agreement, despite different origins, of the conformal anomaly in the two approaches. The natural energy–momentum in the Pauli–Villars approach is a true coordinate-invariant tensor quantity, and we discuss its nontrivial relationship to the corresponding nontensor object arising in the operator formalism, thus providing a novel explanation within a path integral context for the anomalous Ward identities of the latter. We provide a direct calculation of the nontrivial contact terms arising in expectation values of certain energy–momentum products, and we use these to perform a simple consistency check confirming the validity of the change of variables formula for the path integral. Finally, we review the relationship between the conformal anomaly and the energy–momentum two-point functions in our formalism.


2012 ◽  
Vol 27 (09) ◽  
pp. 1250048 ◽  
Author(s):  
IBRAHIMA BAH ◽  
LEOPOLDO A. PANDO ZAYAS ◽  
CÉSAR A. TERRERO-ESCALANTE

Using a holographic proposal for the geometric entropy we study its behavior in the geometry of Schwarzschild black holes in global AdSp for p = 3, 4, 5. Holographically, the entropy is determined by a minimal surface. On the gravity side, due to the presence of a horizon on the background, generically there are two solutions to the surfaces determining the entanglement entropy. In the case of AdS3, the calculation reproduces precisely the geometric entropy of an interval of length l in a two-dimensional conformal field theory with periodic boundary conditions. We demonstrate that in the cases of AdS4 and AdS5 the sign of the difference of the geometric entropies changes, signaling a transition. Euclideanization implies that various embedding of the holographic surface are possible. We study some of them and find that the transitions are ubiquitous. In particular, our analysis renders a very intricate phase space, showing, for some ranges of the temperature, up to three branches. We observe a remarkable universality in the type of results we obtain from AdS4 and AdS5.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Thomas Creutzig ◽  
Yasuaki Hikida ◽  
Devon Stockal

Abstract We examine a strong/weak duality between a Heisenberg coset of a theory with $$ \mathfrak{sl} $$ sl n subregular $$ \mathcal{W} $$ W -algebra symmetry and a theory with a $$ \mathfrak{sl} $$ sl n|1-structure. In a previous work, two of the current authors provided a path integral derivation of correlator correspondences for a series of generalized Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality. In this paper, we derive correlator correspondences in a similar way but for a different series of generalized duality. This work is a part of the project to realize the duality of corner vertex operator algebras proposed by Gaiotto and Rapčák and partly proven by Linshaw and one of us in terms of two dimensional conformal field theory. We also examine another type of duality involving an additional pair of fermions, which is a natural generalization of the fermionic FZZ-duality. The generalization should be important since a principal $$ \mathcal{W} $$ W -superalgebra appears as its symmetry and the properties of the superalgebra are less understood than bosonic counterparts.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Konstantin Weisenberger ◽  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We test the proposal of [1] for the holographic computation of the charged moments and the resulting symmetry-resolved entanglement entropy in different excited states, as well as for two entangling intervals. Our holographic computations are performed in U(1) Chern-Simons-Einstein-Hilbert gravity, and are confirmed by independent results in a conformal field theory at large central charge. In particular, we consider two classes of excited states, corresponding to charged and uncharged conical defects in AdS3. In the conformal field theory, these states are generated by the insertion of charged and uncharged heavy operators. We employ the monodromy method to calculate the ensuing four-point function between the heavy operators and the twist fields. For the two-interval case, we derive our results on the AdS and the conformal field theory side, respectively, from the generating function method of [1], as well as the vertex operator algebra. In all cases considered, we find equipartition of entanglement between the different charge sectors. We also clarify an aspect of conformal field theories with a large central charge and $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry used in our calculations, namely the factorization of the Hilbert space into a gravitational Virasoro sector with large central charge, and a $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody sector.


Sign in / Sign up

Export Citation Format

Share Document