scholarly journals BPS black hole entropy and attractors in very special geometry. Cubic forms, gradient maps and their inversion

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Bert van Geemen ◽  
Alessio Marrani ◽  
Francesco Russo

Abstract We consider Bekenstein-Hawking entropy and attractors in extremal BPS black holes of $$ \mathcal{N} $$ N = 2, D = 4 ungauged supergravity obtained as reduction of minimal, matter-coupled D = 5 supergravity. They are generally expressed in terms of solutions to an inhomogeneous system of coupled quadratic equations, named BPS system, depending on the cubic prepotential as well as on the electric-magnetic fluxes in the extremal black hole background. Focussing on homogeneous non-symmetric scalar manifolds (whose classification is known in terms of L(q, P, Ṗ) models), under certain assumptions on the Clifford matrices pertaining to the related cubic prepotential, we formulate and prove an invertibility condition for the gradient map of the corresponding cubic form (to have a birational inverse map which is given by homogeneous polynomials of degree four), and therefore for the solutions to the BPS system to be explicitly determined, in turn providing novel, explicit expressions for the BPS black hole entropy and the related attractors as solution of the BPS attractor equations. After a general treatment, we present a number of explicit examples with Ṗ = 0, such as L(q, P), 1 ⩽ q ⩽ 3 and P ⩾ 1, or L(q, 1), 4 ⩽ q ⩽ 9, and one model with Ṗ = 1, namely L(4, 1, 1). We also briefly comment on Kleinian signatures and split algebras. In particular, we provide, for the first time, the explicit form of the BPS black hole entropy and of the related BPS attractors for the infinite class of L(1, P) P ⩾ 2 non-symmetric models of $$ \mathcal{N} $$ N = 2, D = 4 supergravity.

2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Tatsuo Azeyanagi ◽  
Tatsuma Nishioka ◽  
Tadashi Takayanagi

1995 ◽  
Vol 10 (28) ◽  
pp. 2081-2093 ◽  
Author(s):  
ASHOKE SEN

Some of the extremal black hole solutions in string theory have the same quantum numbers as the Bogomol’nyi saturated elementary string states. We explore the possibility that these black holes can be identified with elementary string excitations. It is shown that stringy effects could correct the Bekenstein-Hawking formula for the black hole entropy in such a way that it correctly reproduces the logarithm of the density of elementary string states. In particular, this entropy has the correct dependence on three independent parameters, the mass and the left-handed charge of the black hole, and the string coupling constant.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2229-2230
Author(s):  
TATSUO AZEYANAGI

We holographically derive entropy of (near) extremal black holes as entanglement entropy of conformal quantum mechanics(CQM) living in two boundaries of AdS2.


1997 ◽  
Vol 12 (29) ◽  
pp. 5223-5234 ◽  
Author(s):  
Sang Pyo Kim ◽  
Sung Ku Kim ◽  
Kwang-Sup Soh ◽  
Jae Hyung Yee

We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner–Nordström black hole by using the Pauli–Villars regularization method, in which the regulator fields obey either the Bose–Einstein or Fermi–Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.


Sign in / Sign up

Export Citation Format

Share Document