Gelatinase A and Membrane-type 1 Matrix Metalloproteinase mRNA: Expressed in Adrenocortical Cancers but Not in Adenomas

1999 ◽  
Vol 23 (3) ◽  
pp. 237-242 ◽  
Author(s):  
Magnus Kjellman ◽  
Ulla Enberg ◽  
Anders Höög ◽  
Catharina Larsson ◽  
Mikael Holst ◽  
...  
2007 ◽  
Vol 124 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Takashi Hasebe ◽  
Rebecca Hartman ◽  
Liezhen Fu ◽  
Tosikazu Amano ◽  
Yun-Bo Shi

FEBS Letters ◽  
1996 ◽  
Vol 385 (3) ◽  
pp. 238-240 ◽  
Author(s):  
Hiroshi Sato ◽  
Takahisa Takino ◽  
Takeshi Kinoshita ◽  
Kazushi Imai ◽  
Yasunori Okada ◽  
...  

FEBS Letters ◽  
2001 ◽  
Vol 491 (3) ◽  
pp. 222-226 ◽  
Author(s):  
Susan J. Atkinson ◽  
Margaret L. Patterson ◽  
Michael J. Butler ◽  
Gillian Murphy

1998 ◽  
Vol 334 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Kaisa LEHTI ◽  
Jouko LOHI ◽  
Heli VALTANEN ◽  
Jorma KESKI-OJA

Human fibroblasts and HT-1080 fibrosarcoma cells express membrane-type-1 matrix metalloproteinase (MT1-MMP), the cell surface activator of gelatinase A, in separate forms of 63 kDa, 60 kDa and in some cases 43 kDa. In the present work the interrelationships between MT1-MMP processing and gelatinase A activation were analysed using HT-1080 fibrosarcoma cells as a model. It was found that MT1-MMP was synthesized as a 63 kDa protein, which was constitutively processed to a 60 kDa active enzyme with N-terminal Tyr112, as shown by immunoprecipitation, immunoblotting and sequence analyses. Co-immunoprecipitation results indicated that only the active 60 kDa form of MT1-MMP bound gelatinase A at the cell surface. Both the activation of pro-MT1-MMP and the membrane binding of the tissue inhibitor of metalloproteinases type 2 (TIMP-2) and gelatinase A, and subsequent activation of gelatinase A, were inhibited by calcium ionophores. Although the active MT1-MMP was required for cell surface binding and activation of gelatinase A, it was inefficient in activating gelatinase A in fibroblasts or in control HT-1080 cells alone. Low expression levels of TIMP-2 and rapid synthesis of MT1-MMP were found to be critical for gelatinase A activation. In HT-1080 cells, MT1-MMP was further processed to an inactive, 43 kDa cell surface form when overexpressed, or when the cells were treated with PMA. Under these conditions, the activated gelatinase A was detected in the culture medium, in cell membrane extracts and in MT1-MMP-containing complexes. These results indicate that proteolytic processing (activation and degradation/inactivation) of MT1-MMP and MT1-MMP/TIMP-2 relationships at the cell surface are important regulatory levels in the control of gelatinolytic activity.


1998 ◽  
Vol 331 (2) ◽  
pp. 453-458 ◽  
Author(s):  
Susan COWELL ◽  
Vera KNÄUPER ◽  
Margaret L. STEWART ◽  
Marie-Pia D'ORTHO ◽  
Heather STANTON ◽  
...  

SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119–17123], was a weaker inhibitor of the activation cascade.


Sign in / Sign up

Export Citation Format

Share Document