Real-time-PCR-System zum Nachweis von Bacillus cereus (emetischer Typ) in Lebensmitteln

2007 ◽  
Vol 2 (2) ◽  
pp. 190-193 ◽  
Author(s):  
U. Messelhäusser ◽  
M. Fricker ◽  
M. Ehling-Schulz ◽  
H. Ziegler ◽  
D. Elmer-Englhard ◽  
...  
2007 ◽  
Vol 70 (12) ◽  
pp. 2774-2781 ◽  
Author(s):  
I-CHEN YANG ◽  
DANIEL YANG-CHIH SHIH ◽  
JAN-YI WANG ◽  
TZU-MING PAN

Members of the Bacillus cereus group may produce diarrheal enterotoxins and could be potential hazards if they enter the food chain. Therefore, a method capable of detecting all the species in the B. cereus group rather than B. cereus alone is important. We selected nhe as the target and developed a real-time PCR assay to quantify enterotoxigenic strains of the B. cereus group. The real-time PCR assay was evaluated with 60 B. cereus group strains and 28 others. The assay was also used to construct calibration curves for different food matrices and feces. The assay has an excellent quantification capacity, as proved by its linearity (R2 > 0.993), wide dynamic quantification range (102 to 107 CFU/g for cooked rice and chicken, 103 to 107 CFU/ml for milk, and 104 to 107 CFU/g for feces), and adequate relative accuracy (85.5 to 101.1%). For the low-level contaminations, a most-probable-number real-time PCR assay was developed that could detect as low as 100 CFU/ml. Both assays were tested with real food samples and shown to be considerably appropriate for B. cereus group detection and quantification.


2016 ◽  
Vol 99 (4) ◽  
pp. 2617-2624 ◽  
Author(s):  
Fernanda Cattani ◽  
Valdir C. Barth ◽  
Jéssica S.R. Nasário ◽  
Carlos A.S. Ferreira ◽  
Sílvia D. Oliveira

2010 ◽  
Vol 73 (2) ◽  
pp. 395-399 ◽  
Author(s):  
U. MESSELHÄUSSER ◽  
P. KÄMPF ◽  
M. FRICKER ◽  
M. EHLING-SCHULZ ◽  
R. ZUCKER ◽  
...  

In this study, 809 samples of ice cream from different sources were investigated by using cultural methods for the presence of presumptive Bacillus cereus. Isolates from culture-positive samples were examined with a real-time PCR assay targeting a region of the cereulide synthetase gene (ces) that is highly specific for emetic B. cereus strains. The samples were collected from ice cream parlors and restaurants that produced their own ice cream and from international commercial ice cream companies in different regions of Bavaria during the summer of 2008. Presumptive B. cereus was found in 508 (62.7%) ice cream samples investigated, and 24 (4.7%) of the isolates had the genetic background for cereulide toxin production. The level of emetic B. cereus in the positive samples ranged from 0.1 to 20 CFU/g of ice cream.


2013 ◽  
Vol 18 (4) ◽  
pp. 227-232 ◽  
Author(s):  
SHIGEKO UEDA ◽  
MANAMI YAMAGUCHI ◽  
MIKI IWASE ◽  
YOSHIHIRO KUWABARA

2016 ◽  
Vol 79 (5) ◽  
pp. 810-815 ◽  
Author(s):  
FEREIDOUN FORGHANI ◽  
SHUAI WEI ◽  
DEOG-HWAN OH

ABSTRACTThree important foodborne pathogens, Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, are of great concern for food safety. They may also coexist in food matrices and, in the case of B. cereus and S. aureus, the resulting illnesses can resemble each other owing to similar symptoms. Therefore, their simultaneous detection may have advantages in terms of cost savings and rapidity. Given this context, a rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of these three pathogens in food was developed. The assay successfully detected B. cereus (gyrB), L. monocytogenes (hly), and S. aureus (nuc) in a single reaction, and the average melting temperatures were 76.23, 80.19, and 74.01°C, respectively. The application of SYTO9 dye and a slow melt curve analysis ramp rate (0.1°C/s) enabled the production of sharp, high-resolution melt curve peaks that were easily distinguishable from each other. The detection limit in food (milk, rice, and lettuce) was 3.7 × 103 CFU/g without an enrichment step and 3.7 × 101 CFU/g following the 10-h enrichment. Hence, the assay developed here is specific and sensitive, providing an efficient tool for implementation in food for the simultaneous detection of B. cereus, L. monocytogenes, and S. aureus.


2011 ◽  
Vol 28 (3) ◽  
pp. 605-610 ◽  
Author(s):  
I.C. Fernández-No ◽  
M. Guarddon ◽  
K. Böhme ◽  
A. Cepeda ◽  
P. Calo-Mata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document