Blood lymphocyte blastogenesis in patients with thyroid dysfunction: ex vivo response to mitogen activation and cyclosporin A

2010 ◽  
Vol 60 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Garyphallia Papaioannou ◽  
Fotios V. Michelis ◽  
Konstantinos Papamichael ◽  
Helen Karga ◽  
Ekaterini Tiligada
2002 ◽  
Vol 22 (3) ◽  
pp. 342-352 ◽  
Author(s):  
Natalie Serkova ◽  
Paul Donohoe ◽  
Sven Gottschalk ◽  
Carsten Hainz ◽  
Claus U. Niemann ◽  
...  

The authors evaluated and compared the metabolic effects of cyclosporin A in the rat brain during normoxia and hypoxia/reperfusion. Ex vivo31P magnetic resonance spectroscopy experiments based on perfused rat brain slices showed that under normoxic conditions, 500 μg/L cyclosporin A significantly reduced mitochondrial energy metabolism (nucleotide triphosphate, 83 ± 9% of controls; phosphocreatine, 69 ± 9%) by inhibition of the Krebs cycle (glutamate, 77 ± 5%) and oxidative phosphorylation (NAD+, 65 ± 14%) associated with an increased generation of reactive oxygen species (285 ± 78% of control). However, the same cyclosporin A concentration (500 μg/L) was found to be the most efficient concentration to inhibit the hypoxia-induced mitochondrial release of Ca2+ in primary rat hippocampal cells with cytosolic Ca2+ concentrations not significantly different from normoxic controls. Addition of 500 μg/L cyclosporin A to the perfusion medium protected high-energy phosphate metabolism (nucleotide triphosphate, 11 ± 15% of control vs. 35 ± 9% with 500 μg/L cyclosporin A) and the intracellular pH (6.2 ± 0.1 control vs. 6.6 ± 0.1 with cyclosporin A) in rat brain slices during 30 minutes of hypoxia. Results indicate that cyclosporin A simultaneously decreases and protects cell glucose and energy metabolism. Whether the overall effect was a reduction or protection of cell energy metabolism depended on the concentrations of both oxygen and cyclosporin A in the buffer solution.


Neuropeptides ◽  
2001 ◽  
Vol 35 (2) ◽  
pp. 92-99 ◽  
Author(s):  
L Lavagno ◽  
G Bordin ◽  
D Colangelo ◽  
I Viano ◽  
S Brunelleschi

Nanomedicine ◽  
2020 ◽  
Vol 15 (15) ◽  
pp. 1459-1469
Author(s):  
Bruno Fernandes ◽  
Teresa Matamá ◽  
Andreia C. Gomes ◽  
Artur Cavaco-Paulo

Background: Alopecia treatments are scarce and lack efficacy. Cyclosporin A (CsA) has hair growth-inducing properties but its poor cutaneous absorption undermines its use in topical treatments. Aim: Development of a new potential topical treatment of alopecia with CsA. Materials & methods: CsA-loaded poly(d,l-lactide) (PLA) nanoparticles were obtained and characterized. Skin permeation was evaluated in ex vivo porcine skin. Results: Nanoparticles with good physicochemical stability increased CsA skin permeation/hair follicles accumulation, compared with a noncolloidal formulation. CsA biocompatibility in NCTC2455 keratinocytes (reference skin cell line) was clearly improved when encapsulated in PLA nanoparticles. Conclusion: This work fosters further in vivo investigation of CsA-loaded PLA nanoparticles as a promising new strategy to treat alopecia, a very traumatic, possibly autoimmune, disease.


1994 ◽  
Vol 38 (12) ◽  
pp. 2883-2888 ◽  
Author(s):  
E Roilides ◽  
T Robinson ◽  
T Sein ◽  
P A Pizzo ◽  
T J Walsh

1998 ◽  
Vol 22 (11) ◽  
pp. 1097-1102 ◽  
Author(s):  
E Contassot ◽  
E Robinet ◽  
R Angonin ◽  
V Laithier ◽  
M Bittencourt ◽  
...  

Author(s):  
Hiroshi Ohta ◽  
Yukihiro Yabuta ◽  
Kazuki Kurimoto ◽  
Tomonori Nakamura ◽  
Yusuke Murase ◽  
...  

Abstract Primordial germ cells (PGCs) are the founding population of the germ cell lineage that undergo a multistep process to generate spermatozoa or oocytes. Establishing an appropriate culture system for PGCs is a key challenge in reproductive biology. By a chemical screening using mouse PGC-like cells (mPGCLCs), which were induced from mouse embryonic stem cells, we reported previously that forskolin and rolipram synergistically enhanced the proliferation/survival of mPGCLCs with an average expansion rate of ~20-fold. In the present study, we evaluated other chemicals or cytokines to see whether they would improve the current mPGCLC culture system. Among the chemicals and cytokines examined, in the presence of forskolin and rolipram, cyclosporin A (CsA) and fibroblast growth factors (FGFs: FGF2 and FGF10) effectively enhanced the expansion of mPGCLCs in vitro (~50-fold on average). During the expansion by CsA or FGFs, mPGCLCs comprehensively erased their DNA methylation to acquire a profile equivalent to that of gonadal germ cells in vivo, while maintaining their highly motile phenotype as well as their transcriptional properties as sexually uncommitted PGCs. Importantly, these mPGCLCs robustly contributed to spermatogenesis and produced fertile offspring. Furthermore, mouse PGCs (mPGCs) cultured with CsA ex vivo showed transcriptomes and DNA methylomes similar to those of cultured mPGCLCs. The improved culture system for mPGCLCs/mPGCs would be instructive for addressing key questions in PGC biology, including the mechanisms for germ cell migration, epigenetic reprogramming, and sex determination of the germline.


2020 ◽  
Vol 104 (9) ◽  
pp. e252-e259 ◽  
Author(s):  
Seokjin Haam ◽  
Kentaro Noda ◽  
Brian J. Philips ◽  
Takashi Harano ◽  
Pablo G. Sanchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document