Steps in the study of DNA methylation from ϕX174 to genomic imprinting

2005 ◽  
Vol 62 (19-20) ◽  
pp. 2147-2149
Author(s):  
A. Razin
Reproduction ◽  
2010 ◽  
Vol 140 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Philippe Arnaud

The cis-acting regulatory sequences of imprinted gene loci, called imprinting control regions (ICRs), acquire specific imprint marks in germ cells, including DNA methylation. These epigenetic imprints ensure that imprinted genes are expressed exclusively from either the paternal or the maternal allele in offspring. The last few years have witnessed a rapid increase in studies on how and when ICRs become marked by and subsequently maintain such epigenetic modifications. These novel findings are summarised in this review, which focuses on the germline acquisition of DNA methylation imprints and particularly on the combined role of primary sequence specificity, chromatin configuration, non-histone proteins and transcriptional events.


Cell ◽  
1994 ◽  
Vol 77 (4) ◽  
pp. 473-476 ◽  
Author(s):  
Aharon Razin ◽  
Howard Cedar

2014 ◽  
Vol 369 (1652) ◽  
pp. 20130512 ◽  
Author(s):  
Jaehoon Shin ◽  
Guo-li Ming ◽  
Hongjun Song

DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.


1997 ◽  
Vol 11 (13) ◽  
pp. 1891-1898 ◽  
Author(s):  
Ji-Fan Hu ◽  
Pamela H. Nguyen ◽  
Nga V. Pham ◽  
Thanh H. Vu ◽  
Andrew R. Hoffman

Development ◽  
2013 ◽  
Vol 140 (14) ◽  
pp. 2953-2960 ◽  
Author(s):  
T. M. Vu ◽  
M. Nakamura ◽  
J. P. Calarco ◽  
D. Susaki ◽  
P. Q. Lim ◽  
...  

1994 ◽  
Vol 10 (3) ◽  
pp. 78
Author(s):  
E. Li ◽  
C. Beard ◽  
R. Jaenisch

2021 ◽  
Author(s):  
Hollie Marshall ◽  
Moi T Nicholas ◽  
Jelle S van Zweden ◽  
Felix Wäckers ◽  
Laura Ross ◽  
...  

Genomic imprinting is defined as parent-of-origin allele-specific expression. In order for genes to be expressed in this manner an `imprinting' mark must be present to distinguish the parental alleles within the genome. In mammals imprinted genes are primarily associated with DNA methylation. Genes exhibiting parent-of-origin expression have recently been identified in two species of Hymenoptera with functional DNA methylation systems; Apis mellifera and Bombus terrestris. We carried out whole genome bisulfite sequencing of parents and offspring from reciprocal crosses of two B. terrestris subspecies in order to identify parent-of-origin DNA methylation. We were unable to survey a large enough proportion of the genome to draw a conclusion on the presence of parent-of-origin DNA methylation however we were able to characterise the sex- and caste-specific methylomes of B. terrestris for the first time. We find males differ significantly to the two female castes, with differentially methylated genes involved in many histone modification related processes. We also analysed previously generated honeybee whole genome bisulfite data to see if genes previously identified as showing parent-of-origin DNA methylation in the honeybee show consistent allele-specific methylation in independent data sets. We have identified a core set of 12 genes in female castes which may be used for future experimental manipulation to explore the functional role of parent-of-origin DNA methylation in the honeybee. Finally, we have also identified allele-specific DNA methylation in honeybee male thorax tissue which suggests a role for DNA methylation in ploidy compensation in this species.


2012 ◽  
Vol 10 (3) ◽  
pp. 59-76
Author(s):  
Lilia R Kutlyeva ◽  
Irina R Gilayzova ◽  
Rita I Khusainova ◽  
Elsa K Khusnutdinova

Epigenetic mechanisms of gene regulation play a key role in carcinogenesis. This review will focus on the recent advances of epigenetic investigations in the development of human cancer. The role of histone modifications, genomic imprinting and DNA methylation in renal cell carcinoma development and progression will be considered.


Sign in / Sign up

Export Citation Format

Share Document