scholarly journals The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses

2022 ◽  
Vol 79 (1) ◽  
Author(s):  
André Schreiber ◽  
Dorothee Viemann ◽  
Jennifer Schöning ◽  
Sebastian Schloer ◽  
Angeles Mecate Zambrano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air–liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.

2004 ◽  
Vol 24 (3) ◽  
pp. 1081-1095 ◽  
Author(s):  
Nicole H. Purcell ◽  
Dina Darwis ◽  
Orlando F. Bueno ◽  
Judith M. Müller ◽  
Roland Schüle ◽  
...  

ABSTRACT The mitogen-activated protein kinase (MAPK) signaling pathway regulates diverse biologic functions including cell growth, differentiation, proliferation, and apoptosis. The extracellular signal-regulated kinases (ERKs) constitute one branch of the MAPK pathway that has been implicated in the regulation of cardiac differentiated growth, although the downstream mechanisms whereby ERK signaling affects this process are not well characterized. Here we performed a yeast two-hybrid screen with ERK2 bait and a cardiac cDNA library to identify novel proteins involved in regulating ERK signaling in cardiomyocytes. This screen identified the LIM-only factor FHL2 as an ERK interacting protein in both yeast and mammalian cells. In vivo, FHL2 and ERK2 colocalized in the cytoplasm at the level of the Z-line, and interestingly, FHL2 interacted more efficiently with the activated form of ERK2 than with the dephosphorylated form. ERK2 also interacted with FHL1 and FHL3 but not with the muscle LIM protein. Moreover, at least two LIM domains in FHL2 were required to mediate efficient interaction with ERK2. The interaction between ERK2 and FHL2 did not influence ERK1/2 activation, nor was FHL2 directly phosphorylated by ERK2. However, FHL2 inhibited the ability of activated ERK2 to reside within the nucleus, thus blocking ERK-dependent transcriptional responsiveness of ELK-1, GATA4, and the atrial natriuretic factor promoter. Finally, FHL2 partially antagonized the cardiac hypertrophic response induced by activated MEK-1, GATA4, and phenylephrine agonist stimulation. Collectively, these results suggest that FHL2 serves a repressor function in cardiomyocytes through its ability to inhibit ERK1/2 transcriptional coupling.


2010 ◽  
Vol 78 (5) ◽  
pp. 1859-1863 ◽  
Author(s):  
Masood A. Khan ◽  
Richard M. Gallo ◽  
Randy R. Brutkiewicz

ABSTRACT Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yuqin Ye ◽  
Zhenyu Zhao ◽  
Hongyu Xu ◽  
Xin Zhang ◽  
Xinhong Su ◽  
...  

Among sphingosine 1-phosphate receptors (S1PRs) family, S1PR1 has been shown to be the most highly expressed subtype in neural stem cells (NSCs) and plays a crucial role in the migratory property of NSCs. Recent studies suggested that S1PR1 was expressed abundantly in the hippocampus, a specific neurogenic region in rodent brain for endogenous neurogenesis throughout life. However, the potential association between S1PR1 and neurogenesis in hippocampus following traumatic brain injury (TBI) remains unknown. In this study, the changes of hippocampal S1PR1 expression after TBI and their effects on neurogenesis and neurocognitive function were investigated, focusing on particularly the extracellular signal-regulated kinase (Erk) signaling pathway which had been found to regulate multiple properties of NSCs. The results showed that a marked upregulation of S1PR1 occurred with a peak at 7 days after trauma, revealing an enhancement of proliferation and neuronal differentiation of NSCs in hippocampus due to S1PR1 activation. More importantly, it was suggested that mitogen-activated protein kinase-Erk kinase (MEK)/Erk cascade was required for S1PR1-meidated neurogenesis and neurocognitive recovery following TBI. This study lays a preliminary foundation for future research on promoting hippocampal neurogenesis and improving TBI outcome.


2021 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Dewi Irawati Soeria Santoso ◽  
Imelda Rosalyn Sianipar ◽  
Neng Tine Kartinah

In recent years, the prevalence of obesity continues to increase, leading to a public health problem. Therefore, the obesity problem needs serious attention and treatment approaches. Exercise is one of the treatment approach to combat obesity because exercise plays a role in beiging/browning process. Beiging is a differentiation process from white adipocyte to beige adipocyte, which has similar characteristics to brown adipocyte and is marked with an increase of UCP-1 expression. Irisin plays a role in increasing UCP-1 expression by activating p38 mitogen-activated protein kinase (MAPK) and extracellular-signal regulated kinase (ERK) signaling. Muscle contraction during exercise can activate PGC-1α, which leads to the synthesis of irisin. Exercise may increase irisin levels in skeletal muscle and consequently, play as a mediator of beiging process in adipose tissue.


2006 ◽  
Vol 17 (2) ◽  
pp. 645-657 ◽  
Author(s):  
Sarah E. Robertson ◽  
Subba Rao Gangi Setty ◽  
Anand Sitaram ◽  
Michael S. Marks ◽  
Robert E. Lewis ◽  
...  

Extracellular signal-regulated kinase (Erk) is widely recognized for its central role in cell proliferation and motility. Although previous work has shown that Erk is localized at endosomal compartments, no role for Erk in regulating endosomal trafficking has been demonstrated. Here, we report that Erk signaling regulates trafficking through the clathrin-independent, ADP-ribosylation factor 6 (Arf6) GTPase-regulated endosomal pathway. Inactivation of Erk induced by a variety of methods leads to a dramatic expansion of the Arf6 endosomal recycling compartment, and intracellular accumulation of cargo, such as class I major histocompatibility complex, within the expanded endosome. Treatment of cells with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 reduces surface expression of MHCI without affecting its rate of endocytosis, suggesting that inactivation of Erk perturbs recycling. Furthermore, under conditions where Erk activity is inhibited, a large cohort of Erk, MEK, and the Erk scaffold kinase suppressor of Ras 1 accumulates at the Arf6 recycling compartment. The requirement for Erk was highly specific for this endocytic pathway, because its inhibition had no effect on trafficking of cargo of the classical clathrin-dependent pathway. These studies reveal a previously unappreciated link of Erk signaling to organelle dynamics and endosomal trafficking.


2010 ◽  
Vol 30 (13) ◽  
pp. 3233-3248 ◽  
Author(s):  
Ashok K. Pullikuth ◽  
Andrew D. Catling

ABSTRACT Cell migration is critical for normal development and for pathological processes including cancer cell metastasis. Dynamic remodeling of focal adhesions and the actin cytoskeleton are crucial determinants of cell motility. The Rho family and the mitogen-activated protein kinase (MAPK) module consisting of MEK-extracellular signal-regulated kinase (ERK) are important regulators of these processes, but mechanisms for the integration of these signals during spreading and motility are incompletely understood. Here we show that ERK activity is required for fibronectin-stimulated Rho-GTP loading, Rho-kinase function, and the maturation of focal adhesions in spreading cells. We identify p190A RhoGAP as a major target for ERK signaling in adhesion assembly and identify roles for ERK phosphorylation of the C terminus in p190A localization and activity. These observations reveal a novel role for ERK signaling in adhesion assembly in addition to its established role in adhesion disassembly.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3959-3963 ◽  
Author(s):  
Elisabetta Rovida ◽  
Fabio Marra ◽  
Manuela Baccarini ◽  
Persio Dello Sbarba

Abstract Fes is a nonreceptor tyrosine kinase expressed at the highest level in macrophages. We previously showed that the overexpression of c-fes in murine macrophages of the BAC-1.2F5 cell line renders these cells independent of macrophage colony-stimulating factor (MCSF) for survival and proliferation, although no direct relationship could be established between tyrosine-phosphorylated substrates of Fes- and MCSF receptor–dependent signaling and mitogenesis. In this study, we investigated whether the mitogen-activated protein kinase (MAPK) pathway is involved in the growth factor–independent growth of v-fes–overexpressing macrophages. We found a constitutively increased phosphorylation of extracellularly regulated kinase (ERK) in v-fes–overexpressing macrophages as compared with mock-infected cells. This finding was associated with activation of mitogen/extracellular signal–regulated kinase (MEK) and with constitutive localization of ERK in the nucleus. Treatment of v-fes–overexpressing cells with the MEK-specific inhibitor PD98059 markedly reduced cell growth, hyperphosphorylation, and nuclear localization of ERK, indicating that the MAPK pathway mediates the mitogenic effect of v-fes.


1997 ◽  
Vol 139 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Dietmar Zechner ◽  
Donna J. Thuerauf ◽  
Deanna S. Hanford ◽  
Patrick M. McDonough ◽  
Christopher C. Glembotski

Three hallmark features of the cardiac hypertrophic growth program are increases in cell size, sarcomeric organization, and the induction of certain cardiac-specific genes. All three features of hypertrophy are induced in cultured myocardial cells by α1- adrenergic receptor agonists, such as phenylephrine (PE) and other growth factors that activate mitogen- activated protein kinases (MAPKs). In this study the MAPK family members extracellular signal–regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 were activated by transfecting cultured cardiac myocytes with constructs encoding the appropriate kinases possessing gain-of-function mutations. Transfected cells were then analyzed for changes in cell size, sarcomeric organization, and induction of the genes for the A- and B-type natriuretic peptides (NPs), as well as the α-skeletal actin (α-SkA) gene. While activation of JNK and/or ERK with MEKK1COOH or Raf-1 BXB, respectively, augmented cell size and effected relatively modest increases in NP and α-SkA promoter activities, neither upstream kinase conferred sarcomeric organization. However, transfection with MKK6 (Glu), which specifically activated p38, augmented cell size, induced NP and α-Ska promoter activities by up to 130-fold, and elicited sarcomeric organization in a manner similar to PE. Moreover, all three growth features induced by MKK6 (Glu) or PE were blocked with the p38-specific inhibitor, SB 203580. These results demonstrate novel and potentially central roles for MKK6 and p38 in the regulation of myocardial cell hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document