scholarly journals Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations

Author(s):  
Jonathan Luk ◽  
Sung-Jin Oh
2020 ◽  
Vol 4 (1) ◽  
pp. 240-247
Author(s):  
Roopa M. K ◽  
◽  
Narasimhamurthy S. K ◽  

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter covers the Kerr metric, which is an exact solution of the Einstein vacuum equations. The Kerr metric provides a good approximation of the spacetime near each of the many rotating black holes in the observable universe. This chapter shows that the Einstein equations are nonlinear. However, there exists a class of metrics which linearize them. It demonstrates the Kerr–Schild metrics, before arriving at the Kerr solution in the Kerr–Schild metrics. Since the Kerr solution is stationary and axially symmetric, this chapter shows that the geodesic equation possesses two first integrals. Finally, the chapter turns to the Kerr black hole, as well as its curvature singularity, horizons, static limit, and maximal extension.


Author(s):  
Francisco de Melo Viríssimo ◽  
Paul A. Milewski

The problem of two layers of immiscible fluid, bordered above by an unbounded layer of passive fluid and below by a flat bed, is formulated and discussed. The resulting equations are given by a first-order, four-dimensional system of PDEs of mixed-type. The relevant physical parameters in the problem are presented and used to write the equations in a non-dimensional form. The conservation laws for the problem, which are known to be only six, are explicitly written and discussed in both non-Boussinesq and Boussinesq cases. Both dynamics and nonlinear stability of the Cauchy problem are discussed, with focus on the case where the upper unbounded passive layer has zero density, also called the free surface case. We prove that the stability of a solution depends only on two ‘baroclinic’ parameters (the shear and the difference of layer thickness, the former being the most important one) and give a precise criterion for the system to be well-posed. It is also numerically shown that the system is nonlinearly unstable, as hyperbolic initial data evolves into the elliptic region before the formation of shocks. We also discuss the use of simple waves as a tool to bound solutions and preventing a hyperbolic initial data to become elliptic and use this idea to give a mathematical proof for the nonlinear instability.


Author(s):  
Florinda Capone ◽  
Maurizio Gentile ◽  
Jacopo A. Gianfrani

Abstract The onset of thermal convection in an anisotropic horizontal porous layer heated from below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is studied. Linear and nonlinear stability analysis of the conduction solution is performed. Coincidence between the linear instability and the global nonlinear stability thresholds with respect to the L2—norm is proved. Article Highlights A necessary and sufficient condition for the onset of convection in a rotating anisotropic porous layer has been obtained. It has been proved that convection can occur only through a steady motion. A detailed proof is reported thoroughly. Numerical analysis shows that permeability promotes convection, while thermal conductivities and rotation stabilize conduction.


Sign in / Sign up

Export Citation Format

Share Document