scholarly journals Seasonal and inter-annual variations in carbon fluxes in a tropical river system (Tana River, Kenya)

2018 ◽  
Vol 80 (2) ◽  
Author(s):  
Naomi Geeraert ◽  
Fred O. Omengo ◽  
Fredrick Tamooh ◽  
Trent R. Marwick ◽  
Alberto V. Borges ◽  
...  
2015 ◽  
Vol 40 (13) ◽  
pp. 1827-1838 ◽  
Author(s):  
Naomi Geeraert ◽  
Fred Ochieng Omengo ◽  
Fredrick Tamooh ◽  
Paolo Paron ◽  
Steven Bouillon ◽  
...  

2017 ◽  
Author(s):  
Naomi Geeraert ◽  
Fred O. Omengo ◽  
Fredrick Tamooh ◽  
Trent R. Marwick ◽  
Alberto V. Borges ◽  
...  

Abstract. Quantification of sediment and carbon (C) fluxes in rivers with strong seasonal and inter-annual variability presents a challenge for global flux estimates as measurement periods are often too short to cover all hydrological conditions. We studied the dynamics of the Tana River (Kenya) from 2012 to 2014 through daily monitoring of sediment concentrations at three sites (Garissa, Tana River Primate Reserve and Garsen) and daily monitoring of C concentrations in Garissa and Garsen during three distinct seasons. In wet seasons, C fluxes were dominated by particulate organic C (POC) and decreased downstream. Dry season fluxes of dissolved inorganic C (DIC) and POC had a similar share in total C flux at both locations while POC fluxes increased downstream. The dissolved organic C (DOC) flux did not show strong spatial nor temporal variations. The construction of constituent rating curves with a bootstrap method in combination with daily discharge data (1942–2014) provided potential sediment and C flux ranges as a function of annual discharge. At low annual discharge, our estimates generally predict a net decrease of sediment and C storage between the upstream and downstream site. As the annual discharge increases, our simulations shift toward net retention. This analysis allowed us to infer how variations in discharge regime, related to climate or human impacts, may affect riverine fluxes. Overall, we estimate that retention was dominant: integration over all simulations resulted in an average net retention of sediment (~2.9 Mt yr−1), POC (~18000 tC yr−1), DOC (~920 tC yr−1) and DIC (~1200 tC yr−1) over the 73 years of discharge measurements.


2021 ◽  
Vol 170 ◽  
pp. 112671
Author(s):  
Alistair Grinham ◽  
Nathaniel Deering ◽  
Ryan Beecroft ◽  
Jessica Rudd ◽  
Craig Heatherington ◽  
...  

2015 ◽  
Vol 12 (15) ◽  
pp. 12761-12782
Author(s):  
N. Geeraert ◽  
F. O. Omengo ◽  
G. Govers ◽  
S. Bouillon

Abstract. A significant amount of carbon is transported to the ocean as dissolved organic carbon (DOC) in rivers. During transport, it can be transformed through microbial consumption and photochemical oxidation. In dark incubation experiments with water from the Tana River, Kenya, we examined the consumption of DOC through microbial decomposition and the associated change in its carbon stable isotope composition (δ13C). In 15 of the 18 incubations, DOC concentrations decreased significantly by 10 to 60 %, with most of the decomposition taking place within the first 24–48 h. After 8 days, the remaining DOC was up to 3 ‰ more depleted in 13C compared with the initial pool, and the change in δ13C correlated strongly with the fraction of DOC remaining. We propose that the shift in δ13C is consistent with greater microbial lability of DOC originating from herbaceous C4 vegetation than DOC derived from woody C3 vegetation in the semi-arid lower Tana. The findings complement earlier data that riverine C sources do not necessarily reflect their proportion in the catchment: besides spatial distribution, also processing within the river can further influence the riverine δ13C.


2021 ◽  
Author(s):  
RamyaPriya Ramesh ◽  
Elango Lakshmanan

<p>The carbon fluxes in rivers plays a critical role in the global carbon cycle but its role is always understated. The tropical rivers alone accounts for about 70% of global riverine carbon fluxes due to their large areal extent, varying climatic conditions and land use. Studies on the dissolved carbon fluxes in non-perennial tropical rivers are limited, but it holds much importance as that of perennial rivers. Hence, the present study was carried out with an objective to understand about the inorganic and organic carbon fluxes in a large non-perennial tropical river of Southern India. The samples were collected from 28 locations along the river thrice in a year from 2013-2020 and were analysed for major ions, DIC and DOC. The concentration of DIC in the river water in most of the locations is greater than that of DOC. The DOC concentration is greater at pristine locations thereby decreasing along the flow direction of the river, whereas the DIC concentration increases along the flow direction. The spatial and temporal variability in DOC and DIC concentrations is attributed due to the changes in the rainfall, river flow, climate, lithology, land use patterns, in the catchment. The DIC concentration was found to be majorly governed by silicate and carbonate weathering along with biogenic process, mineralisation and other river process, whereas the primary production, microbial process along with soil organic carbon influences the DOC concentration in the rivers. Thus, this study identifies the sources of DIC and DOC in rivers and the processes which influences the carbon export to the sea.</p>


Author(s):  
Raphael Muli Wambua

This article uses the non-linear integrated drought index (NDI) for managing drought and water resources forecasting in a tropical river basin. The NDI was formulated using principal component analysis (PCA). The NDI used hydro-meteorological data and forecasted using recursive multi-step neural networks. In this article, drought forecasting and projection is adopted for planning ahead for mitigation and for the adaptation of adverse effects of droughts and food insecurity in the river basin. Results that forecasting ability of NDI model using ANNs decreased with increase in lead time. The formulated NDI as a tool for projecting into the future.


2019 ◽  
Vol 144 ◽  
pp. 235-242 ◽  
Author(s):  
Anne Bauer-Civiello ◽  
Kay Critchell ◽  
Mia Hoogenboom ◽  
Mark Hamann

2009 ◽  
Vol 6 (11) ◽  
pp. 2475-2493 ◽  
Author(s):  
S. Bouillon ◽  
G. Abril ◽  
A. V. Borges ◽  
F. Dehairs ◽  
G. Govers ◽  
...  

Abstract. The Tana River basin (TRB) is the largest in Kenya (~120 000 km2). We conducted a survey during the dry season throughout the TRB, analyzing a broad suite of biogeochemical parameters. Biogeochemical signatures in headwater streams were highly variable. Along the middle and lower river course, total suspended matter (TSM) concentrations increased more than 30-fold despite the absence of tributary inputs, indicating important resuspension events of internally stored sediment. These resuspended sediment inputs were characterized by a lower and 14C-depleted OC content, suggesting selective degradation of more recent material during sediment retention. Masinga Dam (a large reservoir on the upper river) induced a strong nutrient retention (~50% for inorganic N, ~72% for inorganic phosphate, and ~40% for dissolved silicate). Moreover, while DOC pools and δ13C signatures were similar above, in and below the reservoir, the POC pool in Masinga surface waters was dominated by 13C-depleted phytoplankton, which contributed to the riverine POC pool immediately below the dam, but rapidly disappeared further downstream, suggesting rapid remineralization of this labile C pool in the river system. Despite the generally high turbidity, the combination of relatively high oxygen saturation levels, low δ18O signatures of dissolved O2 (all <+24.2‰), and the relatively low pCO2 values suggest that in-stream primary production was significant, even though pigment data suggest that phytoplankton makes only a minor contribution to the total POC pool in the Tana River.


Sign in / Sign up

Export Citation Format

Share Document