scholarly journals Schemes of modules over gentle algebras and laminations of surfaces

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Christof Geiß ◽  
Daniel Labardini-Fragoso ◽  
Jan Schröer

AbstractWe study the affine schemes of modules over gentle algebras. We describe the smooth points of these schemes, and we also analyze their irreducible components in detail. Several of our results generalize formerly known results, e.g. by dropping acyclicity, and by incorporating band modules. A special class of gentle algebras are Jacobian algebras arising from triangulations of unpunctured marked surfaces. For these we obtain a bijection between the set of generically $$\tau $$ τ -reduced decorated irreducible components and the set of laminations of the surface. As an application, we get that the set of bangle functions (defined by Musiker–Schiffler–Williams) in the upper cluster algebra associated with the surface coincides with the set of generic Caldero-Chapoton functions (defined by Geiß–Leclerc–Schröer).

2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Fedor Bogomolov ◽  
Viktor Kulikov

AbstractThe article contains a new proof that the Hilbert scheme of irreducible surfaces of degree m in ℙm+1 is irreducible except m = 4. In the case m = 4 the Hilbert scheme consists of two irreducible components explicitly described in the article. The main idea of our approach is to use the proof of Chisini conjecture [Kulikov Vik.S., On Chisini’s conjecture II, Izv. Math., 2008, 72(5), 901–913 (in Russian)] for coverings of projective plane branched in a special class of rational curves.


1980 ◽  
Vol 9 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Virginia Monroe ◽  
Lisa Ford
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Davood Afraz ◽  
Rahmatollah Lashkaripour ◽  
Mojtaba Bakherad

Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Alessandro Tanzini

AbstractWe study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $$\tau $$ τ -functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and $$N_f=2$$ N f = 2 on a circle.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Sibyla Andreuchetti ◽  
Vinícius M. Oliveira ◽  
Toshio Fukuda

SUMMARY Many different control schemes have been proposed in the technical literature to control the special class of underactuated systems, the- so-called brachiation robots. However, most of these schemes are limited with regard to the method by which the robot executes the brachiation movement. Moreover, many of these control strategies do not take into account the energy of the system as a decision variable. To observe the behavior of the system’s, energy is very important for a better understanding of the robot dynamics while performing the motion. This paper discusses a variety of energy-based strategies to better understand how the system’s energy may influence the type of motion (under-swing or overhand) the robot should perform.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


Sign in / Sign up

Export Citation Format

Share Document