A geometrically exact viscoplastic membrane-shell with viscoelastic transverse shear resistance avoiding degeneracy in the thin-shell limit.

2005 ◽  
Vol 56 (1) ◽  
pp. 148-182 ◽  
Author(s):  
Patrizio Neff
1989 ◽  
Vol 111 (2) ◽  
pp. 102-108 ◽  
Author(s):  
W. M. Banks ◽  
A. S. Tooth ◽  
P. M. Wilson

A theoretical approach is presented to examine the problem of the fluid loading of a simply supported Glass Reinforced Plastic (GRP) composite cylindrical pipe. The shell layup is composed of specially orthotropic layers, the arrangement of which may be nonsymmetrical through the wall thickness. The theory is developed using Sanders’ thin shell theory, neglecting the effect of transverse shear. An example of the use of the method is given, where the behavior of a horizontal pipe is examined when it is partially or totally filled with fluid. Three layups are examined, one of an isotropic construction using chopped strand mat (CSM) and two of a laminated construction.


Author(s):  
Qingjie Zhang ◽  
Markus Schäfer

This paper compares the design of composite columns in steel and concrete based on EN1994-1-1 and Chinese JGJ138-2016. First, the application ranges of the codes are pointed out. Both codes contain the design of fully encased composite sections and concrete filled rectangular and circular tubes. However, there are different limitations on cross-section sizes, material strength classes, and others. JGJ138 has three separate chapters for the designs related to the three different types of columns. Eurocode 4 gives three different design methods: one general method based on nonlinear calculation, and two simplified methods based on European buckling curves or N-M iteration curves. For the materials, mechanical properties, such as design strength values, are compared based on the same material grade. For axial compression resistance and eccentrically compressive resistance, the two simplified methods from Eurocode 4 are compared with the design method according to JGJ138-2016 through theoretical and parameter studies. The influences of related parameters such as long-term effects, the buckling curves, and N-M iteration curves are also compared. For shear design, JGJ138-2016 considers mainly transverse shear resistances, while Eurocode 4 further considers shear connection and load introduction. The design transverse shear resistance is compared through theory. 


1964 ◽  
Vol 31 (3) ◽  
pp. 458-466 ◽  
Author(s):  
Hyman Garnet ◽  
Joseph Kempner

The lowest axisymmetric modes of vibration of truncated conical shells are studied by means of a Rayleigh-Ritz procedure. Transverse shear deformation and rotatory inertia effects are accounted for, and the results are compared with those predicted by the classical thin-shell theory. Additionally, the results are compared when either of these theories is formulated in two ways: First, in the manner of Love’s first approximation in the classical thin-shell theory, and then by including the influence of the change of the element of arc length through the thickness. It was found that the Love and the more complex formulation yielded results which differed negligibly in either theory. The results predicted by the shear deformation-rotatory inertia theory differed significantly from those predicted by the classical thin-shell theory within a range of parameters which characterize short thick cones. These differences resulted principally from the influence of the transverse shear deformation. It was also found that within this short-cone range an increase in the shell thickness parameter was accompanied by an increase in the natural frequency. Moreover, the increase in frequency with increasing thickness parameter became less severe as the length-to-mean radius ratio was increased. For the longer cones, the frequency was virtually independent of the thickness.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


1986 ◽  
Vol 14 (1) ◽  
pp. 3-32 ◽  
Author(s):  
P. Popper ◽  
C. Miller ◽  
D. L. Filkin ◽  
W. J. Schaffers

Abstract A mathematical analysis of radial tire cornering was performed to predict tire deflections and belt-edge separation strains. The model includes the effects of pure bending, transverse shear bending, lateral restraint of the carcass on the belt, and shear displacements between belt and carcass. It also provides a description of the key mechanisms that act during cornering. The inputs include belt and carcass cord properties, cord angle, pressure, rubber properties, and cornering force. Outputs include cornering deflections and interlaminar shear strains. Key relations found between tire parameters and responses were the optimum angle for minimum cornering deflections and its dependence on cord modulus, and the effect of cord angle and modulus on interlaminar shear strains.


Sign in / Sign up

Export Citation Format

Share Document