scholarly journals Pressure-driven flow in a thin pipe with rough boundary

Author(s):  
Elena Miroshnikova

Abstract Stationary incompressible Newtonian fluid flow governed by external force and external pressure is considered in a thin rough pipe. The transversal size of the pipe is assumed to be of the order $$\varepsilon $$ ε , i.e., cross-sectional area is about $$\varepsilon ^{2}$$ ε 2 , and the wavelength in longitudinal direction is modeled by a small parameter $$\mu $$ μ . Under general assumption $$\varepsilon ,\mu \rightarrow 0$$ ε , μ → 0 , the Poiseuille law is obtained. Depending on $$\varepsilon ,\mu $$ ε , μ -relation ($$\varepsilon \ll \mu $$ ε ≪ μ , $$\varepsilon /\mu \sim \mathrm {constant}$$ ε / μ ∼ constant , $$\varepsilon \gg \mu $$ ε ≫ μ ), different cell problems describing the local behavior of the fluid are deduced and analyzed. Error estimates are presented.

Author(s):  
German Amador Diaz ◽  
John Turizo Santos ◽  
Elkin Hernandez ◽  
Ricardo Vasquez Padilla ◽  
Lesme Corredor

The heat transfer principle of power maximization in power plants with heat transfer irreversibilities was cleverly extended by Bejan [1] to fluid flow, by obtaining that the energy conversion efficiency at maximum power is ηmax = 1/2(1 − P2/P1). This result is analog to the efficiency at maximum power for power plants, ηmax = 1 − (T2/T1)1/2 which was deduced by Curzon and Ahlborn [2]. In this paper, the analysis to obtain maximum power output delivered from a piston between two pressure reservoir across linear flow resistance is generalized by considering the piston cylinder friction, by obtaining relations of maximum power output and optimal speed of the piston in terms of first law efficiency. Expressions to relate the power output, cross sectional area of the chamber and first law efficiency, were deduced in order to evaluate the influence of the overall size constraints and fluid regime in the performance of the piston cylinder system. Flow in circular ducts and developed laminar flow between parallel plates, are considered to demonstrate that when two pressure reservoirs oriented in counterflow, with different and arbitrary cross sectional area, must have the same area in order to maximize the power output of the system. These results introduce some modifications to the results obtained by Bejan [1] and Chen [3]. This paper extends the Bejan and Chen’s work by estimating under turbulent regime the lost available work rate associated with the degree of irreversibilities caused by the flow resistances of the system. This analysis is equivalent to evaluate the irreversibilities in an endoirreversible Carnot heat engine model caused by the heat resistance loss between the engine and its surrounding heat reservoirs. This paper concludes with an application to illustrate the practical applications by estimating the lost available work of an actual steady-flow turbine and the layout pipes upstream and downstream of the same device.


Author(s):  
Dennis K. Williams

This paper discusses the prescribed requirements contained within the ASME B31.3 Process Piping Code that specifically address the considerations of the design corrosion allowance when coincidently taken into account with the mechanical strength requirements of the same. In particular, the most significant effects of the least favorable corrosion allowances in combination with the mechanical strength requirements of ASME B31.3 are prevalent in thin walled, small bore piping of minimal geometric properties associated with the calculation of component stresses in the longitudinal direction. Careful examination of ASME B31.3 paragraph 302.4 reveals that the minimum required thickness of a piping component include allowances for corrosion and when taken in conjunction with paragraph 302.4.1, which requires that when necessary, the wall thickness shall be increased to prevent overstress, damage, or collapse, due to superimposed loads from handling or other causes. The effects of the aforementioned Code requirements are addressed and examples are presented for small bore piping (nps 2″ and below) that lead to a proposed small bore piping criteria for consideration by piping specification engineers. Finally, the results of the evaluation of various combinations of corrosion allowance and mechanical strength requirements in terms of metal cross sectional area and section modulus are presented in tabular form that support the proposed small bore piping criteria.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Zhipeng Duan ◽  
M. M. Yovanovich ◽  
Y. S. Muzychka

The objective of this paper is to furnish the engineer with a simple and convenient means of estimating frictional pressure drop in ducts and the original physical behavior can be clearly reflected. Fully developed turbulent flow frictional pressure drop in noncircular ducts is examined. Simple models are proposed to predict the frictional pressure drop in smooth and rough noncircular channels. Through the selection of a novel characteristic length scale, the square root of the cross-sectional area, the effect of duct shape has been minimized. The proposed models have an accuracy of 6% for most common duct shapes of engineering practice and can be used to predict pressure drop of fully developed turbulent flow in noncircular ducts. It is found that the hydraulic diameter is not the appropriate length scale to use in defining the Reynolds number to ensure similarity between the circular and noncircular ducts. By using the Reynolds number based on the square root of the cross-sectional area, it is demonstrated that the circular tube relations may be applied to noncircular ducts eliminating large errors in estimation of pressure drop. The square root of the cross-sectional area is an appropriate characteristic dimension applicable to most duct geometries. The dimensionless mean wall shear stress is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and direct manner. The dimensionless mean wall shear stress is presented graphically and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional Moody diagram.


2012 ◽  
Vol 201-202 ◽  
pp. 433-437
Author(s):  
Liang Chu ◽  
Jian Chen ◽  
Liang Yao ◽  
Chen Chen ◽  
Jian Wei Cai

The main objective of this work is to present a methodology for development of regenerative braking system hydraulic model that can be used to estimate the master cylinder pressure, master cylinder travel position, normal open valve fluid flow, normal open valve cross-sectional area, normal close valve fluid flow, normal close valve cross-sectional area, accumulator fluid flow and brake caliper fluid flow. According to the above hydraulic model calculation, the cooperation between regenerative braking system generator and ABS hydraulic braking control will be smooth and the arbitration strategy can be designed. Through the simple hydraulic model, the entire brake circuit of ABS can be derived easily.


1994 ◽  
Vol 07 (03) ◽  
pp. 110-113 ◽  
Author(s):  
D. L. Holmberg ◽  
M. B. Hurtig ◽  
H. R. Sukhiani

SummaryDuring a triple pelvic osteotomy, rotation of the free acetabular segment causes the pubic remnant on the acetabulum to rotate into the pelvic canal. The resulting narrowing may cause complications by impingement on the organs within the pelvic canal. Triple pelvic osteotomies were performed on ten cadaver pelves with pubic remnants equal to 0, 25, and 50% of the hemi-pubic length and angles of acetabular rotation of 20, 30, and 40 degrees. All combinations of pubic remnant lengths and angles of acetabular rotation caused a significant reduction in pelvic canal-width and cross-sectional area, when compared to the inact pelvis. Zero, 25, and 50% pubic remnants result in 15, 35, and 50% reductions in pelvic canal width respectively. Overrotation of the acetabulum should be avoided and the pubic remnant on the acetabular segment should be minimized to reduce postoperative complications due to pelvic canal narrowing.When performing triple pelvic osteotomies, the length of the pubic remnant on the acetabular segment and the angle of acetabular rotation both significantly narrow the pelvic canal. To reduce post-operative complications, due to narrowing of the pelvic canal, overrotation of the acetabulum should be avoided and the length of the pubic remnant should be minimized.


Sign in / Sign up

Export Citation Format

Share Document