scholarly journals A pair correlation problem, and counting lattice points with the zeta function

Author(s):  
Christoph Aistleitner ◽  
Daniel El-Baz ◽  
Marc Munsch

AbstractThe pair correlation is a localized statistic for sequences in the unit interval. Pseudo-random behavior with respect to this statistic is called Poissonian behavior. The metric theory of pair correlations of sequences of the form $$(a_n \alpha )_{n \ge 1}$$ ( a n α ) n ≥ 1 has been pioneered by Rudnick, Sarnak and Zaharescu. Here $$\alpha $$ α is a real parameter, and $$(a_n)_{n \ge 1}$$ ( a n ) n ≥ 1 is an integer sequence, often of arithmetic origin. Recently, a general framework was developed which gives criteria for Poissonian pair correlation of such sequences for almost every real number $$\alpha $$ α , in terms of the additive energy of the integer sequence $$(a_n)_{n \ge 1}$$ ( a n ) n ≥ 1 . In the present paper we develop a similar framework for the case when $$(a_n)_{n \ge 1}$$ ( a n ) n ≥ 1 is a sequence of reals rather than integers, thereby pursuing a line of research which was recently initiated by Rudnick and Technau. As an application of our method, we prove that for every real number $$\theta >1$$ θ > 1 , the sequence $$(n^\theta \alpha )_{n \ge 1}$$ ( n θ α ) n ≥ 1 has Poissonian pair correlation for almost all $$\alpha \in {\mathbb {R}}$$ α ∈ R .

2016 ◽  
Vol 11 (1) ◽  
pp. 159-164
Author(s):  
Radhakrishnan Nair ◽  
Entesar Nasr

AbstractThe paper gives conditions for a sequence of fractional parts of real numbers $\left( {\{ a_n x\} } \right)_{n = 1}^\infty $ to satisfy a pair correlation estimate. Here x is a fixed nonzero real number and $\left( {a_n } \right)_{n = 1}^\infty $ is a random walk on the integers.


2018 ◽  
Vol 168 (2) ◽  
pp. 287-293 ◽  
Author(s):  
GERHARD LARCHER ◽  
WOLFGANG STOCKINGER

AbstractWe show for sequences $\left(a_{n}\right)_{n \in \mathbb N}$ of distinct positive integers with maximal order of additive energy, that the sequence $\left(\left\{a_{n} \alpha\right\}\right)_{n \in \mathbb N}$ does not have Poissonian pair correlations for any α. This result essentially sharpens a result obtained by J. Bourgain on this topic.


1964 ◽  
Vol 19 (13) ◽  
pp. 1447-1451 ◽  
Author(s):  
G. Ecker ◽  
W. Kröll

We consider a plasma consisting of particle components with different temperatures. The components are uniformly distributed in the configuration space and MAXWELLIAN in the velocity space. Pair correlations are assumed to be small and higher order correlations negligible. It is shown from the BBGKY-hierarchy that the influence of the electrons on the ion kinetics can be taken into account by treating the ions as dressed particles. The hierarchy for these dressed particles provides the ion-ion correlation function. The electron-ion pair correlation is calculated from the POISSON equation using the ion-ion correlation and relating the electron-ion pair distribution to the average potential. By the same procedure we derive the electron-electron correlation making use of the electron-ion correlation. The results are compared with those of other authors.


2015 ◽  
Vol 18 (6) ◽  
pp. 720-726 ◽  
Author(s):  
Shuai Li ◽  
Ee Ming Wong ◽  
JiHoon E. Joo ◽  
Chol-Hee Jung ◽  
Jessica Chung ◽  
...  

The disease- and mortality-related difference between biological age based on DNA methylation and chronological age (Δage) has been found to have approximately 40% heritability by assuming that the familial correlation is only explained by additive genetic factors. We calculated two different Δage measures for 132 middle-aged female twin pairs (66 monozygotic and 66 dizygotic twin pairs) and their 215 sisters using DNA methylation data measured by the Infinium HumanMethylation450 BeadChip arrays. For each Δage measure, and their combined measure, we estimated the familial correlation for MZ, DZ and sibling pairs using the multivariate normal model for pedigree analysis. We also pooled our estimates with those from a former study to estimate weighted average correlations. For both Δage measures, there was familial correlation that varied across different types of relatives. No evidence of a difference was found between the MZ and DZ pair correlations, or between the DZ and sibling pair correlations. The only difference was between the MZ and sibling pair correlations (p < .01), and there was marginal evidence that the MZ pair correlation was greater than twice the sibling pair correlation (p < .08). For weighted average correlation, there was evidence that the MZ pair correlation was greater than the DZ pair correlation (p < .03), and marginally greater than twice the sibling pair correlation (p < .08). The varied familial correlation of Δage is not explained by additive genetic factors alone, implying the existence of shared non-genetic factors explaining variation in Δage for middle-aged women.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Shigeki Akiyama ◽  
Yunping Jiang

AbstractIt is known that the Möbius function in number theory is higher order oscillating. In this paper we show that there is another kind of higher order oscillating sequences in the form (e2πiαβn g(β))n∈𝕅, for a non-decreasing twice differentiable function g with a mild condition. This follows the result we prove in this paper that for a fixed non-zero real number α and almost all real numbers β> 1 (alternatively, for a fixed real number β> 1 and almost all real numbers α) and for all real polynomials Q(x), sequences (αβng(β)+ Q(n)) n∈𝕅 are uniformly distributed modulo 1.


1953 ◽  
Vol 5 ◽  
pp. 456-459 ◽  
Author(s):  
Theodor Estermann

1. Let a be any irrational real number, and let F(u) denote the number of those positive integers for which (n, [nα]) = 1. Watson proved in the preceding paper that


It has been shown by Bragg (1924) that the birefringence of anisotropic crystalline materials can be ascribed in part to the anisotropic dependence of the magnitude of the induced internal electric field on the electric vector of an incident light wave set at differing orientations to the crystalline axes. The internal field depends on positional correlation between pairs of particles, and if this is anisotropic the induced field depends on the relative orientation of the electric vector to the symmetry axes of the pair correlation function. The square, of the refractive index m of the material depends on the ratio of the induced electric field to the applied field, and, when this ratio depends on the orientation of the applied electric field vector, m2 will have tensor-like properties—at least in so far as it will have three (in general) principal axes and values. In condensed phases the spherical symmetry of individual isolated atoms is lost and a second source o f birefringence resides in the ordered orientation o f individually anisotropically polarizable particles. In so far as it is also mathematically convenient, when treating condensed systems, to deal with the polarizability of any group of atoms which retains its group structure over long periods of time as that of a single entity, birefringence must a fortiori be ascribed also to an intrinsic anisotropy of polarizability of individual particles. Nitta (1940) therefore described the observed birefringence in certain tetragonal crystals in terms of an anisotropically polarizable unit corresponding to the content of one unit cell localized on tetragonal lattice points


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850074 ◽  
Author(s):  
MENGJIE ZHANG

For any real number [Formula: see text], and any [Formula: see text], let [Formula: see text] be the maximal length of consecutive zeros in the first [Formula: see text] digits of the [Formula: see text]-expansion of [Formula: see text]. Recently, Tong, Yu and Zhao [On the length of consecutive zero digits of [Formula: see text]-expansions, Int. J. Number Theory 12 (2016) 625–633] proved that for any [Formula: see text], for Lebesgue almost all [Formula: see text], [Formula: see text] In this paper, we quantify the size of the set of [Formula: see text] for which [Formula: see text] grows to infinity in a general speed. More precisely, for any increasing function [Formula: see text] with [Formula: see text] tending to [Formula: see text] and [Formula: see text], we show that for any [Formula: see text], the set [Formula: see text] has full Hausdorff dimension.


Author(s):  
V. J. Baston ◽  
F. A. Bostock

We consider the following two-person zero-sum game on the closed interval [0,1]. The hider chooses any real number h in [0,1]. The searcher successively chooses real numbers ξ1ξ2… in [0,1], where at each choice ξi he is told whether h = ξih < ξ1 or h > ξi and he may choose ξi+1 in the light of this information. The payoff (to the hider) is the sum of the distances of the searcher from the hider at each of the moves, that is .


The long-range order and pair correlation functions of a two-dimensional super-exchange antiferromagnet in an arbitrary magnetic field are derived rigorously from properties of the standard square Ising lattice in zero field. (The model investigated was described in part I: it is a decorated square lattice with magnetic spins on the bonds coupled antiferromagnetically via non-magnetic spins on the vertices.) The behaviour near the transition temperature in a finite field is similar to that of the normal plane lattice, i. e. the long-range orders or spontaneous magnetizations of the sublattices vanish as ( T t – T ) ⅛ and the pair correlations behave as ω c + W ( T – T t ) ln | T – T t |. The configurational entropy is discussed and the anomalous entropy in the critical field at zero temperature is calculated exactly.


Sign in / Sign up

Export Citation Format

Share Document